Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Тепловое излучение.docx
Скачиваний:
6
Добавлен:
01.04.2025
Размер:
60.63 Кб
Скачать
  1. Соотношение неопределенностей

Соотношения неопределённостей Гейзенберга являются теоретическим пределом точности одновременных измерений двух некоммутирующих наблюдаемых. Они справедливы как для идеальных измерений, так и для неидеальных измерений. Согласно принципу неопределённостей у частицы не могут быть одновременно точно измерены положение и скорость (импульс). Принцип неопределённости уже в виде, первоначально предложенном Гейзенбергом, применим и в случае, когда ни одна из двух крайних ситуаций (полностью определенный импульс и полностью неопределенная пространственная координата — или полностью неопределенный импульс и полностью определенная координата) не реализуется.Пример: частица с определённым значением энергии, находящаяся в коробке с идеально отражающими стенками; она не характеризуется ни каким-либо определённым «положением» или пространственной координатой (волновая функция частицы делокализована на всё пространство коробки, то есть ее координаты не имеют определенного значения, локализация частицы осуществлена не точнее размеров коробки), ни определённым значением импульса (учитывая его направление!).Соотношения неопределённостей не ограничивают точность однократного измерения любой величины (для многомерных величин тут подразумевается в общем случае только одна компонента). Если её оператор коммутирует сам с собой в разные моменты времени, то не ограничена точность и многократного (или непрерывного) измерения одной величины. Например, соотношение неопределённостей для свободной частицы не препятствует точному измерению её импульса, но не позволяет точно измерить её координату (это ограничение называется стандартный квантовый предел для координаты).Соотношение неопределенностей в квантовой механике в математическом смысле есть непосредственное прямое следствие некоего свойства преобразования Фурье.

  1. Уравнение Шредингера

Развивая идеи де Бройля, Шредингер сопоставил им движущуюся комплекснозначную функцию координат от времени - волновую или пси-функцию, котораяполностью характеризует состояние микрочастицы и содержит всю информацию о её движении.УШ –основное уравнение квантовой механики, оно не выводится, а постулируется. Справедливость УШ доказывается тем, что выводы, следующие из него, согласуются с экспериментальными данными. УШ: .Когда состояние частицы можно считать независимым от времени, для её описания можно воспользоваться стационарным УШ: .

  1. Прохождение микрочастиц через потенц барьер

Потенциальный барьер – это область пространства, разделённая на 2 области различными потенциальными энергиями, характеризуется высотой – минимальной потенциальной энергией классической частицы, необходимой для преодоления барьера.Рассмотрим простейший потенциальный барьер прямоугольной формы для одномерного (по оси х) движения частицы: для микрочастицпри E < U, имеется отличная от нуля вероятность, что частица отразится от барьера и будет двигаться в обратную сторону. При E > U имеется также отличная от нуля вероятность, что частица окажется в области x > l, т.е. проникнет сквозь барьер. Такой вывод следует непосредственно из решения уравнения Шредингера, описывающего движение микрочастицы при данных условиях задачи: .Туннельный эффект – явление проникновения частицы через потенциальный барьер. Коэффициент прозрачности D – вероятность проникновения частицы через барьер, чем больше ширина – тем меньше вероятность проникновения.

  1. Квантовые числа — энергетические параметры, определяющие состояние электрона и тип атомной орбитали, на которой он находится.

Главное квaнтовое число n определяет общую энергию электрона и степень его удаления от ядра (номер энергетического уровня); оно принимает любые целочисленные значения, начиная с 1 (n = 1, 2, 3, . . .)

Орбитальное (побочное или азимутальное) квантовое число l определяет форму атомной орбитали. Оно может принимать целочисленные значения от 0 до n-1 (l = 0, 1, 2, 3,..., n-1). Каждому значению l соответствует орбиталь особой формы. Орбитали с l = 0 называются s-орбиталями, l = 1 – р-орбиталями (3 типа, отличающихся магнитным квантовым числом m), l = 2 – d-орбиталями (5 типов), l = 3 – f-орбиталями (7 типов).

Магнитное квантовое число m определяет ориентацию орбитали в пространстве относительно внешнего магнитного или электрического поля. Его значения изменяются от +l до -l, включая 0. Например, при l = 1 число m принимает 3 значения: +1, 0, -1, поэтому существуют 3 типа  р-АО:  рx,  рy,  рz.

Спиновое квантовое число s может принимать лишь два возможных значения +1/2 и -1/2. Они соответствуют двум возможным и противоположным друг другу направлениям собственного магнитного момента электрона, называемого спином (от англ. веретено). Для обозначения электронов с различными спинами используются символы: и .