
- •Кислотный и ферментативный гидролиз сахарозы.
- •Меланоидинообразование(реакция Майяра)
- •Особенности состава и строения крахмала
- •Набухание и клейстеризация крахмала
- •Гелеобразование и ретроградация
- •Декстринизация крахмала
- •Ферментативный гидролиз крахмала.
- •Окисление жиров
- •Изменение жиров при хранении
- •Изменение жиров при варке
- •Изменение жиров при жарке
- •Изменение жиров при жарке продуктов в небольшом количестве жира
- •Изменение жиров при фритюрной жарке
- •Влияние тепловой обработки на пищевую ценность жиров
- •Белки соединительной ткани
- •Глобулярные белки
- •Гидратация
- •Структурообразующие свойства
- •4.5. Влияние технологических факторов на свойства белков
- •Денатурация глобулярных белков
- •Сваривание и деструкция коллагена
- •Физические и химические свойства воды.
- •Количество и формы связи воды в продуктах питания.
- •Влияние замораживания на качество продуктов питания.
- •Структурно-механические (реологические) свойства продукции
- •Физико-химические показатели качества продукции
- •Органолептические показатели качества продукции
- •Показатели безопасности продукции
- •Ассортимент и классификация продукции общественного питания
- •Производственный процесс приготовления продукции общественного питания
- •Способы кулинарной обработки пищевых продуктов
- •Тепловая кулинарная обработка
Сваривание и деструкция коллагена
Из содержащихся в пищевых продуктах фибриллярных белков (коллаген, эластин, миозин, актин и др.) наибольшее влияние на качество кулинарных изделий и блюд оказывают изменения в процессе тепловой кулинарной обработки белка коллагена, тогда как эластин при кулинарной обработке изменяется столь незначительно, что не оказывает заметного влияния на структуру и свойства кулинарной продукции.
При нагревании в воде отдельных коллагеновых волокон или их пучков вначале они несколько набухают, а затем деформируются. Упорядоченная структура коллагена (вытянутые параллельные цепи) плавится, и коллаген переходит в аморфное состояние. В расплавленном состоянии из-за ослабления внутри- и межмолекулярного взаимодействия цепи за счет разрыва части поперечных связей, стабилизирующих структуру коллагенового волокна, принимают произвольную конфигурацию, что приводит к усадке (сокращению) коллагенового волокна. Длина волокон может уменьшиться до 60 % от первоначальной, а их диаметр увеличивается, что приводит к увеличению объема волокна по сравнению с первоначальным.
Поскольку процесс сваривания коллагена идет с поглощением тепла (8,4...22,7 Дж/г), которое необходимо для разрушения поперечных связей (водородных и др.), в систему должно постоянно подаваться тепло.
Заметные изменения линейных размеров коллагеновых волокон наземных животных наблюдаются при достижении 50 °С (коллагена кожи рыб — около 40 °С). При дальнейшем повышении температуры разрушение структуры волокон значительно усиливается, и при достижении температуры 55...65 °С для коллагенов различного происхождения происходит резкое и мгновенное сокращение длины волокон и увеличение их объема. Этот процесс называется свариванием коллагена, а температура, при которой происходит резкое и мгновенное уменьшение длины и увеличение диаметра волокон — температурой сваривания. Температура сваривания коллагенов различного происхождения неодинакова, и даже коллаген одного и того же происхождения в зависимости от толщины и структуры волокон может иметь температуру сваривания, отличающуюся между собой до 6 °С. Сваривание коллагена сопровождается отщеплением от коллагена значительной части связанных с ними углеводов. Наряду с изменением линейных размеров коллагеновых волокон происходит нарушение их фибриллярной структуры, и волокна становятся стекловидными. При сваривании коллагена тройные, плотно свитые спирали нативного коллагена переориентируются в беспорядочно свернутые молекулы. Волокна становятся эластичными, более доступными действию ферментов желудочно-кишечного тракта (трипсина), их прочность значительно снижается.
Температура сваривания зависит от содержания воды в коллагеновом волокне. Чем оно выше, тем ниже температура сваривания. Сухой коллаген не сваривается даже при температуре выше 100 °С. Коллаген может адсорбировать воду до половины своего веса.
Нагревание коллагеновых волокон выше температуры сваривания вызывает дальнейшее разрушение их структуры, обусловленное последовательным разрывом поперечных связей между молекулами тро-
поколлагена и внутримолекулярных поперечных связей между цепями тропоколлагена, что приводит в конечном счете к необратимой дезагрегации (деструкции) не только структуры волокон, но и к дезагрегации структуры молекулы тропоколлагена. Это процесс резко ускоряется при температурах выше 80 °С. В результате описанных изменений из коллагена образуется растворимый в горячей воде (40 °С и выше) продукт, называемый глютином.
Переход коллагена в глютин — это процесс, при котором высокоорганизованное квазикристаллическое, нерастворимое в воде коллагеновое волокно превращается из бесконечно ассиметричной сетки взаимосвязанных тропоколлагеновых единиц в водорастворимую систему независимых молекул с гораздо более низкой степенью внутренней упорядоченности.
Процесс перехода коллагена в глютин включает следующие стадии:
плавление трехспиральной структуры до аморфного состояния;
гидролиз поперечных (межмолекулярных) связей между тропоколлагеновыми единицами;
гидролиз внутримолекулярных поперечных связей;
гидролиз пептидных связей главной цепи.
Таким образом, свойства глютина зависят от аминокислотного состава исходного коллагена, который определяет термодинамические параметры фазового перехода, от числа и распределения внутри- и межмолекулярных поперечных связей, которые устанавливают начальную степень полимеризации волокнистой сетки, и от порядка, в котором проходят вторая, третья и четвертая стадии. Для образования глютина необязательно наличие всех четырех стадий, а также, по-видимому, необязательно, чтобы каждая стадия прошла полностью.
Ускорить процесс перехода коллагена в глютин можно посредством предварительной кислотной обработки (например, маринование мяса), обработкой мяса с повышенным содержанием коллагена проте- олитическими ферментами (например, папаином, бромелином и др.), а также воздействием высоких температур (110 °С и выше). При варке мяса в автоклаве при температуре 120 °С глютина образуется в течение одного и того же времени в 2 раза больше, чем при варке в кипящей воде при обычном давлении. Поскольку при высоких температурах быстрее протекают и нежелательные реакции (распад витаминов, деструкция мышечных белков, реакция меланоидинообразования и др.), снижающие пищевую и биологическую ценность продукта, автоклавы для приготовления кулинарной продукции не применяются.
Вода
Вода в силу особенностей своих физических и химических свойств играет исключительно важную роль в формировании качества продукции общественного питания, ее физико-химических, структурномеханических и органолептических показателей, а также устойчивости в процессе хранения. Вода в различных количествах является компонентом химического состава практически всех пищевых продуктов как животного, так и растительного происхождения, а продукции общественного питания в особенности. Она содержится в клетке и вне ее, выполняя роль диспергирующей среды и растворителя, участвует, таким образом в формировании структуры и консистенции, внешнего вида и других органолептических свойств натуральных продуктов.
Техническая роль воды заключается в том, что вода в жидком и парообразном состоянии или в их сочетании является теплоносителем.
Это ее свойство проявляется в двух направлениях. Первое — вода (пар) пе контактирует с пищевыми продуктами, выполняя функцию промежуточного теплоносителя в рубашке тепловых аппаратов (например, пищеварочные котлы с косвенным обогревом). Второе — вода (пар) находится в контакте с пищевыми продуктами, являясь средой (варочной, паровоздушной), в которой продукт доводится до состояния кулинарной готовности (наплитная посуда, котлы с косвенным обогревом, паровые камеры, парконвектоматы и др.).
Технологическая функция воды широка и многогранна и состоит в том, что она является:
рецептурным компонентом многих полуфабрикатов, кулинарных изделий, блюд, мучных кондитерских и булочных изделий, участвуя в формировании структуры названной продукции;
средой в пищевых дисперсных системах, в которой происходят физические, химические, коллоидные и биохимические реакции (взаимодействия) основных нутриентов, а также структуро- образователем, что в конечном счете предопределяет качество готовой продукции;
растворителем многих пищевых продуктов и их компонентов в процессе производства продукции общественного питания;
веществом с нейтральным вкусом и запахом, что позволяет формировать продукцию (пищевые композиции) с самыми разнообразными вкусовыми, ароматическим и цветовыми оттенками.
Санитарно-гигиеническая функция воды проявляется в том, что она:
в процессе гидромеханической обработки удаляет с поверхности продуктов загрязнения и снижает микробиологическую об- семененность сырья и полуфабрикатов;
обладает высоким пастеризующим и стерилизующим эффектом;
при низких минусовых температурах (в состоянии льда) является самым распространенным и эффективным консервантом, что позволяет в течение длительного времени сохранять на высоком уровне качество продукции.
Состояние воды (жидкое, твердое, парообразное) оказывает большое влияние на течение химических реакций, рост и развитие микроорганизмов, структуру продукции. Для технологических целей должна использоваться питьевая вода, требования к качеству которой заложены в нормативной документации (ГОСТе). Такой широкий перечень функций, которые выполняет вода, не говоря о ее огромной физиологической роли в организме всех живых существ, свидетельствует о ее уникальных физических и химических свойствах.
С точки зрения химии и физики вода представляет собой вещество, в высокой степени способное к реакциям, отличающимся по своим свойствам от других жидкостей, распространенных в природе. Вода и продукты ее диссоциации — ионы водорода (протоны) и ионы гидроксила — являются исключительно важными факторами, определяющими структуру и функциональные свойства таких органических веществ, как белки, липиды, нуклеиновые кислоты, а также структуру и свойства биологических мембран и субклеточных органелл клетки.