
- •Появление и развитие информатики. Структура информатики.
- •Понятия "информация", "сообщение", "данные"
- •Формы адекватности информации: синтаксическая, семантическая и прагматическая
- •Синтаксические меры информации.
- •Вероятностный подход к измерению количества информации.
- •Показатели качества информации.
- •Понятие сигнала. Структурная схема одноканальной системы передачи информации. Классификация систем передачи информации.
- •Понятие модуляции. Виды модуляции
- •Классификация проводных линий связи.
- •Понятие затухания и дисперсии.
- •Классификация беспроводных линий связи. Их использование в корпоративных и локальных сетях.
- •Классификация сигналов. Понятия дискретизации и квантования. Примеры цифрового преобразования непрерывных сигналов.
- •Понятие канала связи их классификация. Типы выделенных и коммутируемых каналов.
- •Многоканальные линии связи. Методы разделения. Достоинства и недостатки.
- •Режимы передачи данных.
- •Кодирование данных. Основные понятия. Способы сигнального кодирования
- •Параллельный способ передачи данных. Примеры параллельных интерфейсов.
- •Последовательный способ передачи данных. Примеры последовательных интерфейсов.
- •Синхронизация данных.
- •Достоверность передачи данных и надежность канала связи.
- •Счётно-решающие средства до появления эвм.
- •Характеристика первых эвм.
- •Эвм первых трех поколений.
- •Четвертое поколение эвм.
- •Отличительные черты эвм пятого поколения.
- •Элементы эвм.
- •Понятие, свойства и способы задания алгоритма.
- •Базовые алгоритмические конструкции.
- •Понятие программы. Языки программирования высокого уровня.
- •Понятие архитектуры и структуры эвм.
- •Основные принципы архитектуры фон Неймана.
- •Процессор эвм: регистры, арифметико-логическое устройство, устройство управления. Основные факторы, определяющие быстродействие процессора.
- •Отличия архитектуры современных эвм от архитектуры фон неймана.
- •Структура персонального компьютера.
- •Системная карта и центральный процессор персонального компьютера
- •Структура памяти персонального компьютера. Оперативная память эвм.
- •Постоянная память. Bios. Быстрая внутренняя кэш-память.
- •Классификация внешней памяти эвм.
- •Основные параметры внешней памяти эвм.
- •Принципы хранения информации в устройствах внешней памяти.
- •Хранение информации на магнитных дисках.
- •Устройства ввода информации в эвм.
- •Устройство вывода информации.
- •Общая характеристика отображения информации в персональных компьютерах.
- •Сравнительная характеристика печатающих устройств.
- •Общая характеристика системного программного обеспечения.
- •Назначение и функции операционной системы.
- •Системы программирования.
- •Пакеты прикладных программ.
- •Определение локальной сети.
- •Основные компоненты локальной сети, их назначение и функции.
- •Топология локальных сетей. Понятие топологии. Шина. Звезда
- •Топология локальных сетей. Кольцо. Дерево. Смешанные топологии.
- •Эталонная семиуровневая модель обмена информацией в сети.7, 6 и 5 уровни.
- •Эталонная семиуровневая модель обмена информацией в сети. Первые четыре уровня.
- •Стандартные сетевые протоколы.
- •Способы адресации в вычислительных сетях
Характеристика первых эвм.
арифметическое устройство: универсальное, параллельного действия, на триггерных ячейках
представление чисел: двоичное, с фиксированной запятой, 16 двоичных разрядов на число, плюс один разряд на знак
система команд: трёхадресная, 20 двоичных разрядов на команду. Первые 4 разряда — код операции, следующие 5 — адрес первого операнда, ещё 5 — адрес второго операнда, и последние 6 — адрес для результата операции. В некоторых случаях третий адрес использовался в качестве адреса следующей команды. Операции: сложение, вычитание, умножение, деление, сдвиг, сравнение с учётом знака, сравнение по абсолютной величине, передача управления, передача чисел с магнитного барабана, сложение команд, остановка.
оперативная память: на триггерных ячейках, для данных — на 31 число, для команд — на 63 команды
постоянная память: штекерная, для данных — на 31 число, для команд — на 63 команды
тактовая частота: 5 кГц
быстродействие: 3000 операций в минуту (полное время одного цикла составляет 17,6 мс; операция деления занимает от 17,6 до 20,8 мс)
количество электровакуумных ламп: 6000 (около 3500 триодов и 2500 диодов)
занимаемая площадь: 60 м²
потребляемая мощность: около 25 кВт
Данные считывались с перфокарт или набирались с помощью штекерного коммутатора. Также мог использоваться магнитный барабан, хранящий до 5000 кодов чисел или команд. Для вывода использовалось электромеханическое печатающее устройство либо фотоустройство для получения данных на фотоплёнке.
Эвм первых трех поколений.
ЭВМ первого поколения в качестве элементной базы использовали электронные лампы и реле; оперативная память выполнялась на триггерах, позднее на ферритовых сердечниках; быстродействие было, как правило, в пределах 5—30 тыс. арифметических оп/с; они отличались невысокой надежностью, требовали систем охлаждения и имели значительные габариты. Процесс программирования требовал значительного искусства, хорошего знания архитектуры ЭВМ и ее программных возможностей. На первых порах данного этапа использовалось программирование в кодах ЭВМ (машинный код), затем появились автокоды и ассемблеры. Как правило, ЭВМ первого поколения использовались для научно-технических расчетов, а сам процесс программирования больше напоминал искусство, которым занимался весьма узкий круг математиков, инженеров-электриков и физиков.
Общепринято, что второе поколение начинается с ЭВМ RCA-501, появившейся в 1959 г. в США и созданной на полупроводниковой элементной базе. Новая элементная технология позволила резко повысить надежность ВТ, снизить ее габариты и потребляемую мощность, а также значительно повысить производительность. Это позволило создавать ЭВМ с большими логическими возможностями и производительностью, что способствовало распространению сферы применения ЭВМ на решение задач планово-экономических, управления производственными процессами и др. В рамках второго поколения все более четко проявляется дифференциация ЭВМ на малые, средние и большие. Конец 50-х годов характеризуется началом этапа автоматизации программирования, приведшим к появлению языков программирования Fortran (1957 г.), Algol-60 и др.
Третье поколение связывается с появлением ЭВМ с элементной базой на интегральных схемах (ИС). В январе 1959 г. Джеком Килби была создана первая ИС, представляющая собой тонкую германиевую пластинку длиной в 1 см. Для демонстрации возможностей интегральной технологии фирма Texas Instruments создала для ВВС США бортовой компьютер, содержащий 587 ИС, и объемом (40см3) в 150 раз меньшим, чем у аналогичной ЭВМ старого образца. Но у ИС Килби был ряд существенных недостатков, которые были устранены с появлением в том же году планарных ИС Роберт Нойса. С этого момента ИС-технология начала свое триумфальное шествие, захватывая все новые разделы современной электроники и, в первую очередь, вычислительную технику.
Значительно более мощным становится программное обеспечение, обеспечивающее функционирование ЭВМ в различных режимах эксплуатации. Появляются развитые системы управления базами данных (СУБД), системы автоматизирования проектных работ (САПР); большое внимание уделяется созданию пакетов прикладных программ (ППП) различного назначения. По-прежнему появляются новые и развиваются существующие языки и системы программирования.