
- •Вопрос 1.
- •Вопрос 2.
- •Вопрос 3.
- •Вопрос 4.
- •Вопрос 5.
- •Вопрос 6.
- •Вопрос 7.
- •Вопрос 8.
- •Вопрос 9.
- •Вопрос 10.
- •Вопрос 11.
- •Вопрос 12.
- •Вопрос 13.
- •Вопрос 14.
- •Вопрос 15.
- •Вопрос 16.
- •Вопрос 17.
- •Вопрос 18.
- •Вопрос 19.
- •Вопрос 20.
- •Вопрос 21.
- •Вопрос 22.
- •Вопрос 1.
- •Вопрос 2.
- •Вопрос 3.
- •Вопрос 4.
- •Вопрос 5.
- •Вопрос 6.
- •Вопрос 7.
- •Вопрос 8.
- •Вопрос 9.
- •Вопрос 10.
- •Вопрос 11.
- •Вопрос 12.
- •Вопрос 13.
- •Вопрос 14.
- •Следствия - Закон сохранения кинетического момента системы относительно неподвижной точки
- •Вопрос 15.
- •Вопрос 16.
- •Вопрос 17.
- •Вопрос 18.
- •Вопрос 19.
- •Вопрос 20.
- •Вопрос 21.
- •Вопрос 22.
- •Вопрос 23.
- •Вопрос 24.
- •Вопрос 25.
- •Вопрос 26.
- •Вопрос 27.
- •Вопрос 28.
Вопрос 14.
Плоское движение твердого тела. Уравнения движения плоской фигуры.
Плоско-параллельным движением твердого тела называется такое его движение, при котором каждая точка тела движется в плоскости, параллельной некоторой неподвижной плоскости (рис. 1.1). То есть точки М1 и М2 тела А, например, двигаются в плоскостях Q1 и Q2, соответственно параллельных плоскости Q. Если в первоначальной момент отрезок М1М2 перпендикулярен плоскостям Q, Q1, Q2, то и при последующем движении тела он остается параллельным своему первоначальному положению и перпендикулярным к этим плоскостям, т.е. движется поступательно. Следовательно, скорости и ускорения всех точек тела, лежащих на отрезке М1М2, равны и одинаково направлены.
Это позволяет свести изучение движение отрезка М1М2 к изучению движения точки М1 или М2 вместе с соответствующим сечением тела в плоскости
Тогда закон движения фигуры в плоскости может быть записан в виде
Вопрос 15.
Теорема о скоростях точек плоской фигуры.
Скорость любой точки плоской фигуры равна геометрической сумме скорости выбранного полюса и скорости точки во вращательном движении фигуры вокруг полюса.
Производная от вектора AM, постоянного по величине и переменного по направлению, численно равна скорости точки М при вращении ее вокруг точки А.
Вектор VMA= ω⋅AM перпендикулярен отрезку АМ.
Численную величину скорости точки М можно получить, если воспользоваться теоремой косинусов
или спроецировать векторное равенство (1) на выбранные оси координат
Вопрос 16.
Теорема о проекциях скоростей двух точек плоской фигуры.
Из теоремы о скоростях точек плоской фигуры следует, что проекции скоростей точек плоской фигуры на ось, проходящую через эти точки, равны. Это легко показывается в рассуждениях:
так как VBA⊥AB , то и проекция VBA на ось АХ равна нулю.
Следовательно, VBx=VAx .
Вопрос 17.
Мгновенный центр скоростей (МЦС). Определение скоростей точек плоской фигуры с помощью МЦС.
Теорема Эйлера-Шаля доказывает, что любое непоступательное перемещение фигуры в плоскости можно осуществить поворотом вокруг некоторого неподвижного центра. В соответствии с этим легко доказывается, что при плоско-параллельном движении в каждый момент времени существует точка, неизменно связанная с плоской фигурой, скорость которой в этот момент равна нолю. Эту точку называют мгновенным центром скоростей (МЦС). В учебниках эту точку пишут с индексом V, например PV, CV.
При определении положения МЦС скорость любой точки может быть записана: VM=VCV+VMCV , где точка СV выбрана за полюс. Поскольку это МЦС и VCV=0 , то скорость любой точки определяется как скорость вращении вокруг мгновенного центра скоростей.
Из рис. 1.5 видно, что мгновенный центр скоростей лежит в точке пересечения перпендикуляров, проведенных к скоростям точек, при этом всегда справедливо соотношение
Рис. 1.5