Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Термех.docx
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
744.03 Кб
Скачать

Вопрос 4.

Определение скорости и ускорения точки (координатный способ).

Скорость

Пусть движение точки задано в декартовой системе координат Oxyz, которую считаем неподвижной, и известны кинематические уравнения движения точки: x = x(t); y = y(t); z = z(t). Используя равенство (5) в п. 26, по формуле (1) выражаем скорость точки:

Так как система координат Oxyz неподвижна, ее единичные векторы i,j,k постоянны (не меняют ни величину, ни направление), то слагаемые, содержащие производные этих векторов, равны нулю и

(9)

Проекциями вектора скорости на оси координат являются сомножители перед единичными векторами, следовательно,

Зная проекции скорости на оси координат, можно определить величину вектора скорости:

(10)

Направление вектора скорости определяется тремя направляющими косинусами:

(11)

Формула (9) позволяет не только определить скорость аналитически, но и построить вектор скорости геометрически. По этой формуле вектор скорости можно представить как сумму трех взаимно перпендикулярных составляющих:

(12)

где

(13)

Геометрически сложив составляющие, найдем вектор скорости. При построении составляющих по формулам (21) нужно учитывать: 1) если производная координаты положительна, то направление составляющей совпадает с направлением единичного вектора координатной оси; 2) если производная отрицательна, составляющая направлена в противоположную сторону.

Ускорение

Пусть движение задано в прямоугольной системе координат Oxyz, которую мы принимаем за неподвижную, и нам известны законы изменения координат точки: x = x(t); y = y(t) ; z = z(t).

Согласно выражению (1), дифференцируем по времени формулу (17) в п. 27, учитывая, что единичные векторы осей координат постоянны:

(2)

Проекциями вектора ускорения на оси координат являются сомножители перед единичными векторами в равенстве (2), следовательно,

(3)

Зная проекции ускорения на оси координат, можно определить величину вектора ускорения:

(4)

Направляющие косинусы, определяющие направление вектора ускорения в системе координат, будут равны

(5)

Формулу (2) можно использовать для геометрического построения вектора ускорения. Представляя вектор ускорения как сумму трех взаимно перпендикулярных составляющих

(6)

где

(7)

а затем геометрически сложив их, найдем вектор ускорения. При построении составляющих по формулам (7) нужно учитывать знаки вторых производных координат точки. Если они положительны, то направления составляющих совпадают с направлениями единичных векторов, если они отрицательны, то составляющие направлены в противоположную сторону.