Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Термех.docx
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
744.03 Кб
Скачать

Вопрос 28.

Уравнения Лагранжа 2-ого рода.

Процесс составления дифференциальных уравнений и их решение значительно упрощаются при использовании дифференциальных уравнений движения системы в обобщенных координатах или уравнений Лагранжа второго рода.

Для вывода уравнений запишем принцип Даламбера-Лагранжа в обобщенных координатах в виде -Qju = Qj (j = 1 ÷ s).

Принимая во внимание, что Фi = -miai = -midVi / dt, получаем

(1)

Далее обобщенные силы инерции в левой части нужно выразить через кинетическую энергию. Это впервые сделал Лагранж, который доказал, что для систем с голономными связями обобщенные силы инерции равны

(2)

Подставляя (2) в (1) получаем дифференциальные уравнения движения системы в обобщенных координатах, которые названы уравнениями Лагранжа второго рода:

(3)

то есть, материальная система с голономными связями описывается уравнениями Лагранжа второго рода по всем s обобщенным координатам.