
- •1. Предпосылки появления цифровых сетей интегрального обслуживания
- •3. Система технической эксплуатации и технического обслуживания
- •4.Физические принципы организации связи в телекоммуникационных системах.
- •6.Механизмы функционирования физического уровня. Модель osi
- •Уровень 1, физический
- •13. Организация системы передачи данных через сеть цсио
- •14. Распределительные службы
- •15. Сравнительные характеристики сети атм и локальной сети
- •16. Сигнализация в цсио. Система сигнализации окс-7. Процедуры установления соединений через сеть цсио.
- •17. Услуги широкополосных цсио.
- •18. Механизмы функционирования уровня атм.
- •25. Концепция цсио (у-цсио). Отличие цсио от обычной телефонной сети.
- •26. Характеристики служб широкополосных цсио
- •3.1 КГц Аудио
- •Isdn телефония 3.1 кГц
- •27. Маршрутизация в территориально-распределенных сетях атм.
- •28. Моделирование цифровых сетей связи с коммутацией пакетов
- •29. Услуги мультимедиа.
- •30. Логическая организация сети атм, использующей ip
- •Широкополосные цсио. Требования к перспективным системам связи для передачи цифровой информации.
- •Приложения мультимедиа.
- •Уровень адаптации атм (уровень aal).
- •Требования к сети связи для реализации приложений мультимедиа.
- •Архитектура h.323
- •Терминал h.323
- •Шлюз (gw)
- •Гейткипер (gk)
- •Блок управления многосторонней связью (mcu)
- •Структура ячейки атм на интерфейсе сетевого узла (nni).
- •39 Зависимость реализации физического уровня от типа среды передачи.
- •41. Асинхронный режим
- •42. Применение функциональной декомпозиции
- •2.4. Функции уровня атм
- •2.5. Функции уровня адаптации атм
- •44. Базовая эталонная модель
- •45. Уровень atm и виртуальные каналы и пути
- •Функциональная архитектура сетевых узлов.
4.Физические принципы организации связи в телекоммуникационных системах.
Телекоммуникационная система – это совокупность аппаратно и программно совместимого оборудования, соединенного в единую систему с целью передачи данных из одного места в другое. На Рис. 1 показаны компоненты типичной телекоммуникационной системы. Телекоммуникационная система способна передавать текстовую, графическую, голосовую или видеоинформацию. В этой главе описаны основные компоненты телекоммуникационных систем. В следующих разделах объясняется, как эти компоненты работают совместно друг с другом, образуя различные виды сетей.
В состав типичной коммуникационной системы входят серверы, пользовательские компьютеры, каналы связи (на рисунке они обозначены красными линиями), а также активное оборудование – модемы, концентраторы и проч.
Физические принципы
Сообщения, сигналы и методы модуляции
При обмене информацией используется понятие сообщения.
Сообщение - это законченный информационный блок. передаваемый или принимаемый в рамках одного сеанса связи. В общем случае сообщение, помимо полезной информации, может содержать служебную информацию, содержащую сведения об адресе, имени абонента, срочности или типе сообщения, методах коррекции ошибок и т.д.
В телекоммуникационных системах для транспортировки сообщений используются системы электросвязи, то есть системы, использующие в качестве носителя электрические сигналы. В общем случае - электромагнитные (включая радиосигналы, инфракрасные лучи и оптические сигналы).
Сообщения подразделяются на непрерывные (аналоговые) и дискретные.
Принцип передачи сообщения по сети связи
Источник может генерировать как непрерывное, так и дискретное сообщение.
В любом случае для его передачи по сети электрической связи необходимо преобразовать сообщение в электрический сигнал S(t). Электрический сигнал также может быть непрерывным или дискретным. Непрерывный электрический сигнал характеризуется частотой передачи, а дискретный – скоростью передачи элементов-(импульсов)
На приемной стороне принятый сигнал преобразуется в сообщение, которое и передается получателю.
В процессе передачи сигнал может исказиться. В связи с этим, для обнаружения и устранения этих искажений при передаче применяется помехозащищенное кодирование сигнала. А на приемной стороне – декодирование.
При преобразовании исходного сообщения в электрический сигнал используется модуляция - то есть, изменение какой либо характеристики несущего сигнала в соответствии с исходным сигналом или сообщением. На приемной стороне осуществляется обратное преобразование - демодуляция.
Модуляция осуществляется на передающей стороне, а демодуляция - на приемной. В системах двунаправленной связи на взаимодействующих объектах должна осуществляться как модуляция так и демодуляция. Устройства. осуществляющие эти функции называются модемами (МОдулятор-ДЕМодулятор).
Все виды модуляции можно разделить на непрерывные и импульсные.
Непрерывные виды модуляции - амплитудная, частотная и фазовая.
При этом в качестве несущего сигнала используется гармоническое колебание “несущей частоты”. В зависимости от вида модуляции в соответствии с исходным сигналом изменяется амплитуда, частота или фаза несущего сигнала.
Импульсные виды модуляции
В качестве переносчика сигналов используется периодическая последовательность прямоугольных импульсов.
Виды модуляции
Амплитудно-импульсная модуляция (АИМ)
Частотно-импульсная модуляция (ЧИМ)
Широтно-импульсная модуляция (ШИМ)
Фазо-импульсная модуляция (ФИМ). А также их комбинации.
В современных системах связи используется в основном импульсно-кодовая модуляция (ИКМ), основанная на кодировании амплитуд импульсов, полученных с использованием АИМ. При этом мгновенное значение амплитуды представляется в виде цифрового двоичного кода. Поэтому системы с ИКМ называются цифровыми системами передачи.
При ИКМ осуществляется дискретизация и квантование исходного непрерывного сигнала.
Дискретизации сигнала
Проблема дискретизации широко освещена в литературе. Считается, что первыми основополагающими работами в этой области были работа Котельникова В.А. “О пропускной способности “эфира” и провол1оки в электросвязи”, вышедшая в 1933г. и независимо от него статья “Связь при наличии шума”, написанная К. Шенноном и опубликованная в 1949г Теорема Котельникова-Шеннона ( называемая часто теоремой отсчетов) позволяет выбрать частоту дискретизации с учётом граничной частоты спектра дискретизируемой функции
Компоненты телекоммуникационной системы
Ниже перечислены основные компоненты телекоммуникационной системы:
1. Серверы, хранящие и обрабатывающие информацию.
2. Рабочие станции и пользовательские ПК, служащие для ввода запросов к базам данных, получения и обработки результатов запросов и выполнения других задач конечных пользователей информационных систем.
3. Коммуникационные каналы – линии связи, по которым данные передаются между отправителем и получателем информации. Коммуникационные каналы используют различные типы среды передачи данных: телефонные линии, волоконно-оптический кабель, коаксиальный кабель, беспроводные и другие каналы связи.
4. Активное оборудование – модемы, сетевые адаптеры, концентраторы, коммутаторы, маршрутизаторы и проч. Эти устройства необходимы для передачи и приема данных.
5. Сетевое программное обеспечение, управляющее процессом передачи и приема данных и контролирующее работу отдельных частей коммуникационной системы.
Функции телекоммуникационной системы
Чтобы передать информацию из одного пункта и получить ее в другом, телекоммуникационной системе нужно выполнить некоторые операции, которые главным образом скрыты от пользователей. Прежде, чем телекоммуникационная система передаст информацию, ей необходимо установить соединение между передающей (sender) и принимающей (receiver) сторонами, рассчитать оптимальный маршрут передачи данных, выполнить первичную обработку передаваемой информации (например, необходимо проверить, что ваше сообщение передается именно тому, кому вы его отослали) и преобразовать скорость передачи компьютера в скорость, поддерживаемую линией связи. Наконец, телекоммуникационная система управляет потоком передаваемой информации (трафиком).
Протоколы
Телекоммуникационная сеть обычно содержит разнообразные аппаратные и программные компоненты, которым необходимо работать совместно, чтобы передавать информацию. Различные компоненты сети "общаются" друг с другом, придерживаясь ряда правил, что и позволяет им работать всем вместе. Такой набор правил, регулирующий процесс передачи данных между двумя точками сети, называется протоколом (protocol). Каждое устройство в сети должно правильно "понимать" протокол другого устройства.
Главные функции сетевых протоколов следующие: идентифицировать каждое устройство, участвующее в передаче данных, проверить, не нуждаются ли данные в повторной передаче, выполнить повторную передачу, если произошла ошибка.
Несмотря на то, что коммерческие, правительственные и компьютерные учреждения осознают необходимость введения общих стандартов для передачи данных, в промышленности пока нет универсальных стандартов. В следующих главах вопросы внедрения стандартов на передачу данных рассмотрены подробнее.
Типы сигналов: аналоговые и цифровые. Модемы
Поток информации в телекоммуникационной системе передается в виде электронных сигналов. Сигналы бывают двух типов аналоговые и цифровые. Аналоговый сигнал представляет собой непрерывные колебания синусоидальной формы. Аналоговые сигналы используются в основном при передаче голоса.
Цифровой сигнал, в отличие от аналогового, является дискретным и имеет импульсную форму. С помощью цифровых сигналов информация передается, предварительно закодированная двумя дискретными значениями сигнала: 0 и 1. Как вы уже догадались, такая форма передачи данных весьма удобна при использовании компьютеров, которые понимают именно двоичную информацию. Но в большинстве коммуникационных каналах нельзя передавать цифровые данные без некоторого преобразования – все цифровые сигналы должны быть преобразованы в аналоговые, прежде чем быть переданными по каналу связи. Одним из устройств, применяющихся для преобразования сигналов, является модем (modem – MODulation/DEModulation, модуляция/демодуляция).
Модемы обычно применяют для передачи данных через обычные телефонные линии.
Модем – это устройство, преобразующее цифровые сигналы, передаваемые компьютером, в аналоговую форму. На принимающей стороне модем выполняет обратное преобразование сигнала – из аналоговой формы в цифровую.
5.Процесс мультиплексированной передачи информации ячейки.
В информационных технологиях и связи, мультиплекси́рование (англ. multiplexing, muxing) — уплотнение канала, т. е. передача нескольких потоков (каналов) данных с меньшей скоростью (пропускной способностью) по одному каналу.
В телекоммуникациях мультиплексирование подразумевает передачу данных по нескольким логическим каналам связи в одном физическом канале. Под физическим каналом подразумевается реальный канал со своей пропускной способностью — медный или оптический кабель, радиоканал.
В информационных технологиях мультиплексирование подразумевает объединение нескольких потоков данных (виртуальных каналов) в один. Примером может послужить видеофайл, в котором поток (канал) видео объединяется с одним или несколькими каналами аудио.
Устройство или программа, осуществляющая мультиплексирование, называется мультиплексором.
Мультиплексирование с разделением по частоте (FDM)
Технология
Мультиплексирование с разделением по частоте (англ. FDM, Frequency Division Multiplexing) предполагает размещение в пределах полосы пропускания канала нескольких каналов с меньшей шириной. Наглядным примером может послужить радиовещание, где в пределах одного канала (радиоэфира) размещено множество радиоканалов на разных частотах (в разных частотных полосах).
Основные применения
Используется в сетях мобильной связи (см. FDMA) для разделения доступа, в волоконно-оптической связи аналогом является мультиплексирование с разделением по длине волны (WDM, Wavelength Division Multiplexing) (где частота — это цвет излучения излучателя), в природе — все виды разделений по цвету (частота электромагниных колебаний) и тону (частота звуковых колебаний).
Мультиплексирование с разделением по времени (TDM)
Технология
Мультиплексирование с разделением по времени (англ. TDM, Time Division Multiplexing) предполагает кадровую передачу данных, при этом переход с каналов меньшей ширины (пропускной способности) на каналы с большей освобождает резерв для передачи в пределах одного кадра большего объёма нескольких кадров меньшего.
На рисунке: А, В и С — мультиплексируемые каналы с пропускной способностью (шириной) N и длительностью кадра Δt; E — мультиплексированный канал с той же длительносью Δt но с шириной M*N, один кадр которого (суперкадр) несёт в себе все 3 кадра входных мультиплексируемых сигналов последовательно, каждому каналу отводится часть времени суперкадра — таймслот, длиной ΔtM=Δt/M
Таким образом, канал с пропускной способностью M * N может пропускать M каналов с пропускной способностью N, причём при соблюдении канальной скорости (кадров в секунду) результат демультиплексирования совпадает с исходным потоком канала (А, В или С на рисунке) и по фазе, и по скорости, т. е. протекает незаметно для конечного получателя.
Основные применения
беспроводные TDMA-сети, Wi-Fi, WiMAX;
канальная коммутация в PDH и SONET/SDH;
пакетная коммутация в ATM, Frame Relay, Ethernet, FDDI;
коммутация в телефонных сетях;
последовательные шины: PCIe, USB.
Мультиплексирование с разделением по длине волны (WDM)
Технология
Мультиплексирование с разделением по длине волны (англ. WDM, Wavelength Division Multiplexing) предполагает передачу по одному оптическому волокну каналов на различных длинах волн. В основе технологии лежит факт того, что волны с разными длинами распространяются независимо друг от друга. Выделяют три основных типа спектрального уплотнения: WDM, CWDM и DWDM.
Основные применения
городские сети передачи данных
магистральные сети передачи данных