- •1. Линейные операции над матрицами. Умножение матриц. Свойства матриц.;
- •2.Многочлен от матрицы. Свойства транспонированных матриц.
- •3.Определители малых порядков. Свойства определителей.
- •5.Теорема Лапласа. Методы вычисления определителей.
- •10) Ранг матрицы. Свойства ранга матрицы. Методы вычисления.;
- •12) Решение невырожденных линейных систем. Формулы Крамера.;
- •13. Метод Гаусса решения систем линейных алгебраических уравнений
- •14) Критерий совместности системы линейных алгебраических уравнений (теорема Кронекера-Капелли).
- •15. Метод решения произвольной системы линейных алгебраических уравнений.
- •16) Линейные операции над векторами, свойства векторов.;
- •17. Линейные операции над векторами, свойства векторов;
- •18. Линейные операции над векторами с заданными координатами, свойства векторов.
- •25. Выражение векторного произведения через координаты векторов.;
- •26.Теорема о коллинеарности двух ненулевых векторов.;
- •27. Смешанное произведение векторов и его свойства.;
- •28. Выражение смешанного произведения через координаты векторов.;
- •29. Теорема о компланарности трех ненулевых векторов.;
- •30.Преобразование координат. Прямоугольная декартова система координат.;
- •31.Деление отрезка в данном отношении.
- •32. Способы задания прямой на плоскости.;
- •33. Расположение двух прямых на плоскости.
- •34. Вывод уравнений плоскости в пространстве и прямой на плоскости.
- •44. Матрица линейного оператора. Связь между координатами вектора и его образа;
- •46. Эллипс, вывод уравнения, директрисы и эксцентриситет. Окружность.;
- •47) Гипербола, вывод уравнения, директрисы и эксцентриситет.;
- •48.Парабола, вывод уравнения. Директриса параболы.;
- •49.Способы записи квадратичных форм.
- •50. Приведение квадратичной формы к каноническому виду. Метод Якоби.
- •51. Положительная и отрицательная определённость квадратичных форм. Критерий Сильвестра.
- •Второй блок
- •1.Комплексные числа, Действия над комплексными числами.;
- •2.Числовая последовательность и ее предел.;
- •4.Предел монотонной ограниченной последовательности.;
- •5) Число е. Натуральные логарифмы.;
- •6.Предел функции в точке. Односторонние пределы.;
- •7) Бесконечно большие функции. Бесконечно малые функции. Связь между ними.;
- •8.Связь между функцией, ее пределом и бесконечно малой функцией.;
- •10.Первый замечательный предел.;
- •11.Второй замечательный предел.;
- •32. Теоремы Ролля, Лагранжа и Коши.;
- •33.Правило Лопиталя (0/0) ;
- •34.Правило Лопиталя для различных неопределен-ей.
- •35.Возрастание и убывание функции.;
- •36.Необходимое условие экстремума функции;
- •37.Достаточные условия экстремума функции.
- •38.Наибольшие и наименьшие значения функции на отрезке.;
- •39.Выпуклость, вогнутость, точки перешиба функции.
- •40.Асимптоты графика функции.;
- •41. Схема исследования и построение графика функции
- •42.Формула Тейлора и ее применение.
40.Асимптоты графика функции.;
Прuмер:Найти асимптоты графика функции у = х*эпсилон^Х.;
Решение:
Так как Limx->+бескон (х*эпсилон^2)/x = Limx->+бескон эпсилон^Х = +бескон, то график функции при х->+бескон наклонной асимптоты не имеет.;
При х -> -бескон справедливы соотношения:
K = Limx->-бескон (х*эпсилон^2)/x = Limx->-бескон эпсилон^Х = 0,
b = Limx->-бескон (x*эпсилон^2 - 0*x) = Limx->-бескон x*эпсилон^Х = Limx->-бескон x/ эпсилон^-х = [бескон/бескон] = Limx->-бескон 1/ -эпсилон^-r = 0.;
41. Схема исследования и построение графика функции
1) найти область определения функции, промежутки непрерывности и точки разрыва;
2) найти асимптоты графика функции;
3) проверить симметрию графика, периодичность;
4) найти интервалы монотонности, экстремумы;
5) найти интервалы выпуклости, вогнутости, точки перегиба;
6) найти точки пересечения с осями координат;
7) провести в случае необходимости исследование на концах области определения;
8) построить график функции.аргумента, принадлежащих ОДЗ. При отрицательных значениях аргумента график достраивается на том основании, что для четной функции он симметричен относительно оси Oy, а для нечетной относительно начала координат.
42.Формула Тейлора и ее применение.
Формула Тейлора позволяет вычислять значения функции с любой точьностью.
Пусть известны значения f(a); f'(a); f"(a); f"'(a),...функции f(x) и её последовательный производных в начальной точке х=а. Требуется же найти значение функции при ином значении х.
Вомногих случаях для этого достаточно вычислить значение многочлена Тейлора:
f(a)+f'(a)/1!*(x-a)+f"(a)/2!*(x-a)^2+...+f(n)(a)/n!*(x-a)^n, взяв здесь два, три или большее число членов в зависимости от требуемой степени точности.
