
Добавил:
Upload
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз:
Предмет:
Файл:Matan_31-40.docx
X
- •2.Системы координат на плоскости
- •3. Функция. Классификация Функций.
- •Сложная функция
- •4.Способы задания ф-ий.
- •5.Предел ф-ии. Геометрический смысл.
- •6. Бесконечно большие (бб) ф-ии. Основные определения и свойства.
- •7.Бесконечно малые функции (бм). Основные определения и свойства
- •8.Основные теоремы о пределах.
- •9. Признаки существования пределов
- •10. Первый замечательный предел
- •10. 1 Замечательный предел.
- •11. 2 Замечательный предел.
- •12. Сравнение бесконечно малых функций. Примеры.
- •13.Таблица эквивалентности. Теорема о применении эквивалентных бесконечно малых. Примеры.
- •14.Непрерывность функции. Примеры.
- •15. Классификация точек разрыва. Примеры.
- •31. Восстание и убывание функций. Пример.
- •32. Выпуклость графика функции. Точки перегиба. Пример.
- •33. Асимптоты графика функции. Пример.
- •34. Схема графика построения функции.
- •35. Неопределенный интеграл и его свойства.
- •37. Метод интегрирования по частям. Пример.
- •38. Интегрирование рациональных дробей (многочлены с действительными корнями).
- •40. Интегрирование иррациональностей.
- •41. Интегрирование тригонометрических функций. Пример.
- •42.Определенный интеграл. Геометрический смысл. Пример.
- •43. Свойства определенного интеграла. Примеры.
- •44. Формула Ньютона-Лейбница и ее применение. Пример.
- •45.Замена переменной в определенном интеграле.
- •46.Интегрирование по частям в определенном интеграле. Пример.
- •47.Геометрические приложения определенного интеграла.(площади) пример.
- •48.Геометрические приложения определенного интеграла (длина дуги).Пример.
- •49.Несобственный интеграл первого рода. Пример.
- •50.Несобственный интеграл второго рода .Пример.
50.Несобственный интеграл второго рода .Пример.
Определение. пусть ф-ция y=f(x) ограничена на [a;b) .точку х=b будем называть особой, если f(x) неограничена в любой окрестности этой точки,но ограничена на любом отрезке [a,b-ξ]
Пусть на этом отрезке ф-ция интегрируема, тогда если существует конечный предел при E-> 0 то тогда его называют интегралом второго рода и обозначают :
Аналогично.
Пример.
Исследовать
на сходимость интеграл
.
Решение.
Это несобственный интеграл второго
рода, так как х = 1 – точка разрыва
второго рода подинтегральной функции,
поэтому
,
следовательно,
интеграл расходится.
Ответ:
интеграл
расходится.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]