
- •Экология как наука
- •2. Экологическое состояние территории России
- •3. Учение о биосфере и ноосфере
- •4. Биосфера и ее эволюция
- •8. Основные функции гидросферы, состав и характеристика.
- •9. Структура, виды и строение экосистем.
- •Строение экосистемы
- •10. Неживые компоненты экосистемы
- •11. Живые компоненты экосистемы
- •12. Автотрофы, характеристика и их место в экосистеме.
- •13. Гетеротрофы и их место в экосистеме.
- •14. Биотическая структура экосистемы и условия ее функционирования
- •15. Перенос вещества и энергии в экосистеме.
- •16. Принципиальная схема переноса вещества и энергии в экосистеме.
- •17. Сукцессия. Примеры сукцессии экосистем.
- •18. Экологическая пирамида, характеристика и виды.
- •19. Понятие о среде и экологических факторов.
- •20. Экологические факторы, их характеристика и виды.
- •21. Характеристика абиотических экологических факторов.
- •22. Характеристика биотических экологических факторов.
- •23. Биотические взаимоотношения в экосистеме.
- •24. Стенобионтные и эврибионтные организмы.
- •25. Солнечное излучение – важнейший экологический фактор.
- •28.Понятие о популяции, биоценоз
- •33. Загрязнение атмосферного воздуха в зависимости от происхождения, масштабов и агрегатного состояния.
- •37. Причины возникновения «озоновых дыр» и пути решения проблемы.
- •38. Парниковый эффект, основные газы его вызывающие
- •39. Положительные и отрицательные последствия парникового эффекта.
- •40. Причины возникновения кислотных дождей, последствия после их выпадения.
- •41. Главные загрязнители водных объектов, самоочищение водоемов
- •42. Загрязнения литосферы. Источники загрязнения почвы, последствия загрязнения.
- •43. Понятие о качестве окружающей среды. Нормирование качества окружающей природной среды.
- •44. Значение фотосинтеза в биосферных процессах.
- •45. Роль особо охраняемых территорий.
- •46. Виды экологических нормативов. Санитарно-гигиенические нормативы качества.
- •47. Последствия загрязнения атмосферного воздуха.
- •48. Природные ресурсы, классификация, виды, структура и особенности их потребления.
- •49.Перспективы развития традиционной и нетрадиционной энергетики.
- •50.Порядок пользования природной средой и природными ресурсами.
- •51.Сущность экологической ответственности.
- •52.Плата за природные ресурсы и за загрязнение окружающей природной среды.
- •53.Экологические особенности урбанизированных территорий.
- •54.Город-как очаг загрязнения, основные виды загрязнений.
- •55. Система органов экологического управления рф.
- •56. Экологическая лицензия и экологический лимит на природопользование.
- •57. Экономический механизм охраны окружающей природной среды и его особенности.
- •58. Экологический контроль . Экологический мониторинг.
- •59. Процессы природопользования введены в сферу рыночных отношений.
- •60. Стимулирование природоохранной деятельности.
- •61. Основные методы очистки промышленных выбросов и сточных вод, безотходные и малоотходные технологии.
- •62. Экологическая экспертиза проектов, объектов.
- •63. Элементы стратегии выживания человечества
- •65. Демографический взрыв и его последствия
- •66. Деятельность «Римского клуба» по разрешению экологических проблем
- •67. Роль международного союза охраны природы
- •68. Роль общественных организаций в охране природных ресурсов
- •69. Концепция устойчивого развития
23. Биотические взаимоотношения в экосистеме.
Биотические — связи между живыми организмами в экосистеме. Основной вид биотических связей — пищевые связи (цепи питания).
2. Звенья пищевой цепи:
— производители — растения и некоторые бактерии, создающие органические вещества из неорганических;
— потребители — животные, некоторые растения и бактерии, питающиеся готовыми органическими веществами;
— разрушители — грибы и некоторые бактерии, разрушающие органические вещества до неорганических.
3. Внутривидовые отношения — биотические связи между особями одного вида. Примеры: конкуренция между самцами из-за самки, борьба особей из-за лидерства в группе, забота родителей о потомстве, охрана самцами молодых животных и самок.
Роль биотических связей в экосистеме. Взаимосвязь организмов — производителей, потребителей и разрушителей в экосистеме — основа круговорота веществ и превращений энергии. Цепи питания — пути передачи веществ и энергии.
24. Стенобионтные и эврибионтные организмы.
Стенобионты (греч. stenos — узкий, ограниченный) — организмы, живущие в узком диапазоне экологического фактора (с малой экологической пластичностью).
Эти организмы способны существовать лишь при приблизительно постоянных условиях окружающей среды, выдерживая небольшие изменения нескольких или даже одного фактора (температуры, солёности, влажности, давления, наличия определённой пищи и прочих). Стенобионтами являются все внутренние паразиты, многие животные и растения.
Жизнь некоторых стенобионтов по большей части зависит только от одного фактора. Например, панда. Её пища — определённый вид бамбука. Отсутствие этого источника питания приводит к гибели животного. То есть ареал панды зависит от области произрастания бамбука.
Эврибионты - животные и растительные организмы, способные существовать при значительные изменениях условий окружающей среды.
Эврибионтность вида увеличивается способностью переносить неблагоприятные условия в состоянии анабиоза (многие бактерии, споры и семена многих растений, взрослые многолетние растения холодных и умеренных широт, зимующие почки пресноводных губок и мшанок, яйца жаброногих ракообразных, взрослые тихоходки и некоторые коловратки и др.) или спячки (некоторые млекопитающие). У некоторых насекомых и ракообразных (например, стрекозы, сухопутные крабы) личинки ведут водный образ жизни, а взрослые особи — наземный. Т. о., условия существования на разных стадиях жизненного цикла очень различны, хотя каждая стадия ограничена более узким их диапазоном. Эврибионтность некоторых широко распространённых видов обусловлена приспособленностью разных популяций таких видов к обитанию в районах с различными условиями. Т.о., степень эврибионтности вида в целом выше, чем отдельных особей или стадий развития. Э. обычно свойственны более широкие, ареалы, чем противопоставляемым им стенобионтам.
25. Солнечное излучение – важнейший экологический фактор.
Солнечное излучение является основным источником энергии для всех процессов, происходящих на Земле. В спектре солнечного излучения можно выделить три области, различные по биологическому действию: ультрафиолетовую, видимую и инфракрасную. Ультрафиолетовые лучи с длиной волны менее 0,290 мкм губительны для всего живого, но они задерживаются озоновым слоем атмосферы. До поверхности Земли доходит лишь небольшая часть более длинных ультрафиолетовых лучей (0,300 - 0,400 мкм). Они составляют около 10% лучистой энергии. Эти лучи обладают высокой химической активностью - при большой дозе могут повреждать живые организмы. В небольших количествах, однако, они необходимы, например, человеку: под влиянием этих лучей в организме человека образуется витамин Д, а насекомые зрительно различают эти лучи, т.е. видят в ультрафиолетовом свете. Они могут ориентироваться по поляризованному свету.
Видимые лучи с длиной волны от 0,400 до 0,750 мкм, достигающие поверхности Земли, имеют особенно большое значение для организмов. Зеленые растения за счет этого излучения синтезируют органическое вещество (осуществляют фотосинтез), которое используют в пищу все остальные организмы. Для большинства растений и животных видимый свет является одним из важных факторов среды, хотя есть и такие, для которых свет не является обязательным условием существования (почвенные, пещерные и глубоководные виды приспособления к жизни в темноте). Большинство животных способны различать спектральный состав света - обладать цветовым зрением, а у растений цветки имеют яркую окраску для привлечения насекомых-опылителей.
Инфракрасные лучи с длиной волны более 0,750 мкм глаз человека не воспринимает, но они являются источником тепловой энергии (45% лучистой энергии). Эти лучи поглощаются тканями животных и растений, вследствие чего ткани нагреваются. Многие хладнокровные животные (ящерицы, змеи, насекомые) используют солнечный свет для повышения температуры тела (некоторые змеи и ящерицы являются экологически теплокровными животными). Световые условия, связанные с вращением Земли, имеют отчетливую суточную и сезонную периодичность. Почти все физиологические процессы у растений и животных имеют суточный ритм с максимумом и минимумом в определенные часы: например, в определенные часы суток цветок у растений открывается и закрывается, а у животных возникли приспособления к ночной и дневной жизни.
26-27.Закон минимума Либиха - закон, открытый. Либихом ( 1840 ), согласно которому относительное действие отдельного экологического фактора тем сильнее, чем больше он находится по сравнению с другими факторами в минимуме ; по данному закону, от вещества, концентрация которого лежит в минимуме, зависят рост растений, величина и устойчивость их урожайности. Закон минимума Либиха гласит : рост растения зависит от того элемента питания, который присутствует в минимальном количестве. В изобилии присутствуют двуокись углерода и вода, а потому они не являются факторами, ограничивающими рост. А вот цинка в почве очень мало, потребность растения в нем невелика, и рост растения будет успешен до тех пор, пока не будет израсходован весь его запас. Поэтому наличие цинка является ограничивающим, или лимитирующим фактором. Закон минимума Либиха распространяется на все абиотические и биотические факторы, влияющие на организм. Такими факторами могут быть, например, конкуренция со стороны другого вида, присутствие хищника или паразита. Сформулированный закон применим как к растениям, так и животным. Закон толерантности Шелфорда - закон, согласно которому существование вида определяется лимитирующими факторами, находящимися не только в минимуме, но и в максимуме. Закон толерантности расширяет закон минимума Либиха. Формулировка: "лимитирующим фактором процветания организма может быть как минимум, так и максимум экологического влияния, диапазон между которыми определяет степень выносливости (толерантности) организма к данному фактору". Закон толерантности дополняют положения американского эколога Ю. Одума:организмы могут иметь широкий диапазон толерантности в отношении одного экологического фактора и низкий диапазон в отношении другого; в организмы с широким диапазоном толерантности в отношении всех экологических факторов обычно наиболее распространены; диапазон толерантности может сузиться и в отношении других экологических факторов, если условия по одному экологическому фактору не оптимальны для организма; многие факторы среды становятся ограничивающими (лимитирующими) в особо важные (критические) периоды жизни организмов, особенно в период размножения.оптимальные значения экологических факторов для организмов в природе и в лабораторных условиях (в силу существенной их изоляции), зачастую, оказываются различными (гипотеза компенсации экологических факторов); что тесно связано с различением фундаментальной и реализованной экологической ниши; К этим положениям также примыкает закон МитчерлихаБауле, названный А. Тинеманом законом совокупного действия: совокупность факторов воздействует сильнее всего на те фазы развития организмов, которые имеют наименьшую пластичность - минимальную способность к приспособлению.
Толерантность (от греческого толеранция - терпение) - способность организмов выдерживать изменения условий жизни (колебания температуры, влажности, света). Например, одни гибнут при температуре 50, а другие выдерживают кипячение. Или в разных условиях биологические процессы протекают с различной скоростью. Например, скорость роста многих растений зависит от концентрации различных веществ (воды, СО2, ионов водорода)
Диапазон толерантности.
Чтобы выразить относительную степень толерантности, в экологии используют приставки стено- (от греч. stenos -узкий, тесный) и эври- (от греч. eurys - широкий), поли- (от греч. polys - многий, многочисленный) и олиго- (от греч. oligos - немногий, незначительный). Так (см. схему; Одум,1975) если в качестве фактора взять, например, температуру, то вид I - стенотермный и олиготермный, вид II - эвритермный, вид III - стенотермный и политермный: Организмы с широким диапазоном толерантности обозначают приставкой "Эври". Эврибионт - организм, способный жить при различных условиях среды. Например: эвритермный - переносящий широкие колебания температуры. С узким диапазоном - обозначают приставкой "Стено". Стенобионт - организм, требующий строго определённых условий среды. Например: форель - стенотермный вид, а окунь - эвритермный. Форель не выносит большие колебания температуры, если исчезнут все деревья по берегам горного потока, это приведет к повышению температуры на несколько градусов, в результате чего форель погибнет, а окунь выживет. При помещении организма в новые условия, он через некоторое время привыкает, адаптируется, происходят сдвиги кривой толерантности - это называется адаптацией или акклиматизацией. Для нормального развития организмов необходимо наличие различных факторов строго определённого качества, каждый из них должен быть и в определённом количестве. В соответствии с законом толерантности избыток какого-либо вещества может быть так же вреден, как и недостаток, т.е. все хорошо в меру. Например: урожай может погубить как при засушливом, так и при слишком дождливом лете. При этом, по закону минимума недостаток какого-либо одного вещества не компенсируется избытком всех остальных. Если в почве много азота, калия и др. питательных веществ, но не хватает фосфора (или наоборот) растения будут нормально развиваться только до тех пор, пока не усвоят весь фосфор. Факторы, сдерживающие развитие организмов из-за недостатка или их избытка по сравнению с потребностями называются лимитирующими. Положение о лимитирующих факторах облегчат изучение сложных ситуаций во взаимоотношениях организмов и среды обитания. Однако не все факторы имеют одинаковое экологическое значение. Например: О2 является фактором физиологической необходимости для всех организмов, но становится лимитирующим лишь в определённых местообитаниях (если гибнет рыба в реке, то в первую очередь должна быть изменена концентрация О2 в воде, т.к. она сильно изменчива).