
- •Строительные материалы (сузс)
- •Генетическая классификация горных пород.
- •Влияние условий образования на структуру и свойства горных пород (привести конкретные примеры).
- •Породообразующие минералы магматических горных пород: химический состав, свойства.
- •Магматические горные породы: механизмы образования, особенности строения.
- •Минеральный состав магматических горных пород, свойства, применение в строительстве.
- •Породообразующие минералы осадочных горных пород: химический состав, свойства.
- •Осадочные горные породы: условия образования.
- •Минеральный состав осадочных горных пород, свойства, применение в строительстве.
- •Метаморфические горные породы: условия образования, особенности строения, минеральный состав, свойства, применение в строительстве.
- •Применение природных каменных материалов в строительстве. –
- •Способы обработки горных пород, типы фактур обработанного камня. –
- •Выветривание природных каменных материалов. Защита природного камня от разрушения. –
- •Глины: условия образования, составы и основные свойства глин. 10
- •Добавки, применяемые в производстве строительной керамики. 11
- •Основы технологии производства изделий строительной керамики. 12
- •Физико-химические процессы, протекающие в сырце при его обжиге. 13
- •Классификации изделий строительной керамики по свойствам черепка и по назначению. –
- •Характеристики основных видов изделий строительной керамики. –
- •Достоинства и недостатки древесины как строительного материала. –
- •1. Достоинства древесины как материала, учитываемые при конструировании
- •2. Недостатки древесины как материала, учитываемые при конструировании
- •Состав, макро- и микроструктура древесины. 7
- •Физико-механические свойства древесины. 8
- •Влажность древесины и ее влияние на свойства древесины. 9
- •Защита древесины от гниения и возгорания. –
- •7. Защита древесины от возгарания
- •Круглый лес, пиломатериалы и изделия из древесины. –
- •Классификация неорганических вяжущих веществ. –
- •Гипсовые вяжущие вещества: сырье, производство, технические свойства, применение в строительстве. 20
- •Твердение гипсового теста. 21
- •Известь строительная воздушная: сырье, производство, технические свойства, применение в строительстве. 22
- •Твердение известкового теста. 22
- •Магнезиальные вяжущие вещества: производство, технические свойства, применение в строительстве. –
- •Жидкое стекло: сырье, производство и применение в строительстве. –
- •Гидравлическая известь: сырье, производство, свойства, отличие гидравлической извести от воздушной. –
- •Основы технологии портландцемента. 23
- •Физико-химические процессы, протекающие при обжиге сырья в производстве клинкера портландцемента. 23
- •Минеральный состав портландцементного клинкера, характеристики клинкерных минералов и их влияние на свойства портландцемента.24
- •Технические свойства портландцемента. 25
- •Твердение цементного теста. Состав и строение цементного камня. 26
- •Коррозия цементного камня и способы замедления процессов разрушения камня. –
- •Разновидности портландцемента: быстротвердеющий, сульфатостойкий, белый и цветные. 27
- •Активные минеральные добавки. 28
- •Пуццолановые цементы, их свойства и применение в строительстве. 28
- •Смешанные цементы на основе шлаков: свойства и применение в строительстве. 28
- •Глиноземистый цемент: сырье, производство, свойства и применение в строительстве.29
- •Расширяющиеся и напрягающиеся цементы: особенности составов, свойства и назначение. –
- •Общие понятия о металлах. Классификации металлов. –
- •Кристаллизация металлов, типы структур, дефекты кристаллов. 18
- •Особенности поведения металлов при их деформировании. Обработка металлов давлением. 17
- •Термическая и химико-термическая обработка металлов. 19
- •Сортамент, классификации и маркировка чугунов и сталей. –
- •Цветные металлы и сплавы. –
- •Коррозия металлов и защита от коррозии. –
Основы технологии производства изделий строительной керамики. 12
1)карьерные работы; 2)механическая обработка глиняной массы; 3)формование изделий (пластическим, жестким, пулусухим, сухим и шликерным способом); 4)сушка и обжиг. Карьерная глина в естественном состоянии непригодна для получения керамических изделий. Поэтому проводится обработка с целью подготовки массы. Подготовку массы ведут в сочетании естественной и механической обработки. Естественная обработка – вылеживание предварительно добытой глины в течение 1-2 лет при периодическом увлажнении, замораживании и оттаивании. Механическая обработка глин производится с целью дальнейшего разрушения их природной структуры, удаления или измельчения крупных включений, удаления вредных примесей. В зависимости от вида изготовляемой продукции, вида и свойств сырья массу приготовляют пластическим, жестким, полусухим, сухим и шликерным способами. При пластическом способе подготовки массы и формования исходные материалы при естественной влажности или предварительно высушенные смешивают с добавками воды до получения теста с влажностью от 18 до 28%. Этот вид производства является наиболее простой и распространенный.Глиняная масса подвергается уплотнению под давлением 1,6-7МПа. Жесткий способ формования является разновидностью пластического способа. Влажность формуемой массы при этом способе колеблется от 13% до 18%. Формование осуществляется на мощных вакуумных шнековых или гидравлических прессах под давлением до 20 МПа. При этом способе требуются меньшие энергетические затраты чем при пластическом способе. Полусухой способ. Керамические изделия формуют из шихты с влажностью 8-12% при давлениях 15-40 МПа. Недостатком является металлоемкость, но длительность производственного цикла сокращается в два раза, до 30% уменьшается расход топлива. Сухой способ – это разновидность полусухого производства керамических изделий. Пресс-порошок готовится с влажностью 2-6%. При этом устраняется полностью необходимость сушки. Таким способом изготовляют плотные керамические изделия – плитки для полов, дорожный кирпич, материалы из фаянса и фарфора. Шликерный способприменяется, когда изделия изготавливаются из многокомпонентной массы, состоящей из неоднородных и трудноспекающихся глин и добавок. Отливка изделий производится из массы с содержанием воды до 40%. Сушка: Перед обжигом изделия должны быть высушены до содержания влаги 5-6% во избежание неравномерной усадки, искривлений и растрескивания при обжиге. Сушка производится в туннельных или камерных сушилах до 72 часов при температуре 120-150оС. Затем идет обжиг.
Физико-химические процессы, протекающие в сырце при его обжиге. 13
Обжиг – важнейший и завершающий процесс в производстве керамических изделий. Процесс делится на три периода: прогрев сырца, собственно обжиг и регулируемое охлаждение. 1.При прогреве сырца до 120 град
удаляется физически связанная вода и керамическая масса становится непластичной. Но если добавить воду, пластические свойства массы сохраняются. 2.В температурном интервале от 450 до 600 град происходит отделение химически связанной воды, разрушение глинистых минералов и глина переходит в аморфное состояние. При этом и при дальнейшем повышении температуры выгорают органические примеси и добавки, а керамическая масса теряет свои пластические свойства. При 800 град начинается повышение прочности изделий, благодаря протеканию реакций в твердой фазе на границах поверхностей частиц компонентов.В процессе нагрева до 1000 град возможно образование новых кристаллических силикатов. Одновременно с этим легкоплавкие соединения керамической массы и минералы плавни создают некоторое количество расплава, который обволакивает не расплавившиеся частицы, стягивает их, приводя к уплотнению и усадке массы в целом. Эта усадка называется огневой усадкой (2-8%). После остывания изделие приобретает камневидное состояние, водостойкость и прочность. Свойство глин уплотняться при обжиге и образовывать камнеподобный черепок называется спекаемостью глин. Интервал температур от температуры огнеупорности до начала спекания называется интервалом спекания. Интервал спекания для легкоплавких глин составляет 50-100 град, а огнеупорных до 400 град. Интервал температур обжига в зависимости от назначения и свойств керамического изделия от 900 для кирпича до 1800 для огнеупорной керамики градусов.