
- •1 Модуль
- •Назовите основные величины, характеризующие акустические волны и поясните их физический смысл и взаимосвязь.
- •Физический смысл тензора деформаций и тензора напряжений. Закон Гука, его физический смысл.
- •Дайте понятие интенсивности и энергии звуковой волны. В чем отличие волновых уравнений для описания бегущих и стоячих волн?
- •Какие типы волн могут распространяться в газовых, жидкостных и твердых средах? Какими физическими величинами определяются скорости распространения упругих волн?
- •Какие виды поверхностных волн могут распространяться на границах раздела сред и в чем их особенность? Опишите возможные способы возбуждения поверхностных волн.
- •В чем особенность нормальных волн и в каких условиях они могут существовать? Физический смысл дисперсии скорости звука. Практические способы возбуждения нормальных волн.
- •При каких условиях могут существовать критические углы на границе сред, в чем их смысл, как их определить, какие явления наблюдаются при этом?
- •Какими упругими постоянными характеризуются твердые среды? Что такое волновое сопротивление среды и чем оно определяется?
- •Назовите основные акустические характеристики сред. Поясните механизм затухания акустических волн.
- •Как зависит коэффициент затухания от структуры среды и от частоты колебаний? Какое значение придается затуханию волн в акустическом контроле?
- •Механизм затухания волн в различных средах. Поглощение и рассеяние волн.
- •Отражение и преломление акустических волн на границах раздела сред. Трансформация волн. Критические углы.
- •В чем сущность закона Снеллиуса при падении акустической волны на границу раздела двух сред? в чем сущность коэффициентов отражения и прохождения и от чего они зависят?
- •Как используется наличие критических углов в практике контроля?
- •Как определить угол падения акустических волн при заданном угле ввода пучка в объект? Обратная задача.
- •Особенности отражения волн от свободной границы твердого тела. Обменные углы.
- •Дифракция волн в твердых телах. Явление поляризации для акустических волн.
- •Отражение и прохождение акустических волн при нормальном падении на границу двух сред, разделенных тонким слоем. Просветление границы.
- •2 Модуль
- •В чем состоит физическая сущность пьезоэффекта?
- •Перечислите основные свойства и характеристики пьезоматериалов и дайте их физический смысл.
- •Чем определяется механическая добротность пьезопреобразователей? За счет каких параметров можно реально повысить мощность акустического излучателя?
- •Опишите структуру традиционного электроакустического тракта.
- •Опишите структуру прямого пьезопреобразователя и назначение отдельных элементов.
- •В чем состоит физический смысл коэффициента преобразования? Каким образом можно добиться реального увеличения коэффициента преобразования?
- •Какими преимуществами обладают широкополосные преобразователи? Какие существуют способы расширения полосы пропускания частот для пьезопреобразователей?
- •Каким образом обеспечивается стабильный контакт преобразователя с объектом контроля? Как влияет толщина слоя смазки на чувствительность контроля?
- •Ршх пэп. Причины возникновения шумов преобразователей и способы их уменьшения.
- •Что такое поле излучения преобразователя и чем оно характеризуется? Диаграмма направленности.
- •Что такое ближняя и дальняя зоны преобразователя и чем она характерна? Как можно объяснить наличие осцилляций в ближней зоне преобразователя?
- •Изменится ли направленность акустического поля дискового преобразователя при изменении его диаметра или параметров среды?
- •Поясните методику построения мнимого излучателя для плоскопараллельной задержки.
- •Поясните методику построения мнимого излучателя для наклонной задержки.
- •Какие типы фокусирующих преобразователей используются в практике контроля и в чем их особенность? Какими параметрами характеризуется поле излучения фокусирующего преобразователя?
- •Наклонные, раздельно-совмещенные, хордовые пэп. Конструкции и параметры.
- •Основные характеристики преобразователей и способы их определения.
- •В чем особенность и эффективность преобразователей на фазированных решетках.
- •Модуль 3
- •Физические основы эхо-метода контроля. Структура и принцип действия эхо-импульсного дефектоскопа (требования к узлам).
- •Основные типы искусственных дефектов. Расчет акустического тракта. Ард-диаграммы и их применение.
- •Характеристики эхо-метода контроля: глубина прозвучивания, мертвая зона, разрешающая способность. Способы улучшения характеристик.
- •Чувствительность эхо-метода контроля и способы ее повышения. Что такое уровень чувствительности и какие уровни различают при реализации контроля?
- •Виды сканирования объектов. Шаг и скорость сканирования.
- •Особенности повышения чувствительности эхо-метода при высоком уровне помех.
- •Помехи при эхо-методе контроля и способы их уменьшения.
- •Способы определения координат и оценка размеров и формы дефектов при эхо-методе контроля.
- •Теневой метод контроля. Физические основы метода. Оценка изменения уровня сигнала в зависимости от величины дефекта и параметров объекта контроля.
- •Особенности аппаратуры для реализации теневых методов контроля. Помехи при теневом контроле и способы их уменьшения.
- •На чем основаны временной теневой и дифракционно-временной методы контроля, их возможности?
- •Зеркально-теневой метод контроля. Схемы прозвучивания. Оценка результатов контроля.
- •Измеряемые характеристики и признаки дефектов.
- •Схемы измерения условных размеров дефектов. Погрешности измерения условных размеров. Какие существуют способы задания крайних положений преобразователя при измерении дефектов?
- •Методы распознавания типа дефектов (по условным размерам, по коэффициенту формы).
- •Методы распознавания типа дефектов (по параметрам трансформированных и дифрагированных волн).
- •Стандартные образцы со-1, со-2, со-3, используемые при настройке аппаратуры.
- •Стандартные образцы предприятия (соп), их особенности и виды отражателей.
- •Модуль 4
- •Физический смысл появления акустической эмиссии. Источники появления волн акустической эмиссии и основные параметры аэ.
- •Акустическая эмиссия при деформации материалов и многократном нагружении. Какие требования предъявляются к аппаратуре и преобразователям при контроле методом аэ?
- •Приведите примеры практического применения метода аэ. Какие преимущества имеет метод аэ по сравнению с другими?
- •Методика определения местоположения дефектов по сигналам аэ. Число каналов и топология расположения преобразователей при контроля аэ-методом?
- •Методика проведения аэ-контроля:требования к аппаратуре и условиям проведения контроля, подготовка объекта к контролю, подготовка аппаратуры.
- •Принцип действия ультразвукового эхо-импульсного толщиномера. Виды акустических трактов при контроле толщин изделий?
- •Виды погрешностей при измерениях толщины. Контрольные образцы.
- •Ограничивающие параметры объекта контроля при эхо-импульсной толщинометрии. От каких факторов зависит диапазон измерений в толщиномерах?
- •Методика проведения толщинометрии реальных объектов.
- •Особенности акустического контроля неметаллических и композиционных многослойных конструкций. Дефекты соединений.
- •Сущность, аппаратура и область применения интегральных и локальных методов свободных колебаний.
- •Импедансный метод контроля. Основы метода, аппаратура, возможности и область применения.
- •Велосимметрический метод контроля. Основы методов, аппаратура, возможности и область применения.
- •Акустический контроль физико-механических характеристик материалов (твердость и прочность материалов). Особенности методики и аппаратуры.
- •Особенности контроля прочности бетона и структуры чугуна.
- •Акустический контроль поверхностных характеристик материалов (шероховатость, поверхностно упрочненные слои).
- •Контроль стыковых сварных соединений листовых конструкций и труб.
Отражение и преломление акустических волн на границах раздела сред. Трансформация волн. Критические углы.
Рассмотрим случай, когда плоская упругая волна, распространяясь в среде 1, падает под произвольным углом на границу раздела. Геометрия задачи и направление координатных осей показаны на рис.1.16. Волна частично проходит через границу, а частично отражается от нее. В отличие от анализа задачи с электромагнитными волнами для упругих волн необходимо принять во внимание не три, а пять волн: падающую, поперечную и продольную отраженные и поперечную и продольную преломленные. Если одна из сред является жидкостью или газом, поперечные волны в ней отсутствуют и общее число волн сокращается.
Рисунок 1.16 – Отражение и преломление волн на границе двух твердых сред.
Рассмотрим условия существования критических углов. Если первой и второй средой являются твердые тела, то из закона синусов вытекает возможность существования целого ряда критических углов.
Первый критический угол I при падении продольной волны существует при условии cl1<cl2. Он соответствует условию слияния продольной преломленной волны с поверхностью
(1.50)
Распространяющаяся вдоль границы неоднородная волна, называемая головной, используется в дефектоскопии. Максимальное значение напряжения головная волна имеет под поверхностью объекта и с ее помощью удается обнаруживать подповерхностные дефекты.
Второй критический угол II существует при условии cl1<ct2 (падает продольная волна) и он соответствует условию слияния с поверхностью преломленной поперечной волны, т.е.
(1.51)
В этом случае неоднородная волна подобна поверхностной рэлеевской волне и их трудно отличить друг от друга.
Третьим критическим углом называют угол падения поперечной волны, про котором отраженная продольная волна превращается в неоднородную. Он определяется выражением
(1.52)
при условии ct2<cl2.
В чем сущность закона Снеллиуса при падении акустической волны на границу раздела двух сред? в чем сущность коэффициентов отражения и прохождения и от чего они зависят?
Рисунок 1.16 – Отражение и преломление волн на границе двух твердых сред.
В случае продольной падающей волны выполнение граничных условий эквивалентно следующему:
(1.44)
где cl1, cl2, ct1, ct2 - скорости распространения продольных и поперечных волн в верхней и нижней средах . Отсюда вытекает
(1.45)
Первое из этих соотношений есть закон равенства углов падения и отражения, а остальные являются обобщением закона Снеллиуса на случай упругих волн. Если падающая волна является поперечной, то условия на углы находятся аналогичным образом.
Дальнейшее решение задачи сводится к нахождению амплитуд отраженных и преломленных волн и коэффициентов отражения и прохождения.
Коэффициенты отражения R и прохождения D равны отношениям амплитуд соответствующих отраженных и прошедших и падающих волн, т.е.
(1.46)
где A0 - амплитуда падающей волны.
Коэффициент прохождения (отражения) по энергии выражается соотношением
(1.47)
где - коэффициент прохождения для поперечной волны при падении продольной; Il и - интенсивности падающей и преломленной волн.
Коэффициенты отражения и прохождения по амплитуде
На практике чаще используются коэффициенты по энергии
При наклонном падении продольной волны на границу
Коэффициент прохождения (отражения) по энергии определяется произведением соответствующих коэффициентов прохождения (отражения) по амплитуде в прямом и обратном направлениях через границу. Например
(1.48)
где Dlt - коэффициент прохождения по амплитуде для падающей продольной и преломленной поперечной волн; - коэффициент прохождения по амплитуде для падающей поперечной и преломленной в верхнюю среду продольной волн, проходящих через границу в обратном направлении.
Данное соотношение весьма важно для дефектоскопии, в связи с тем, что один и тот же преобразователь, как правило, используется для изучения и приема акустических волн.
Сумма всех коэффициентов отражения и прохождения по энергии равна единице из закона сохранения энергии. Например, при падении продольной волны на границу двух твердых тел
(1.49)