
- •1 Модуль
- •Назовите основные величины, характеризующие акустические волны и поясните их физический смысл и взаимосвязь.
- •Физический смысл тензора деформаций и тензора напряжений. Закон Гука, его физический смысл.
- •Дайте понятие интенсивности и энергии звуковой волны. В чем отличие волновых уравнений для описания бегущих и стоячих волн?
- •Какие типы волн могут распространяться в газовых, жидкостных и твердых средах? Какими физическими величинами определяются скорости распространения упругих волн?
- •Какие виды поверхностных волн могут распространяться на границах раздела сред и в чем их особенность? Опишите возможные способы возбуждения поверхностных волн.
- •В чем особенность нормальных волн и в каких условиях они могут существовать? Физический смысл дисперсии скорости звука. Практические способы возбуждения нормальных волн.
- •При каких условиях могут существовать критические углы на границе сред, в чем их смысл, как их определить, какие явления наблюдаются при этом?
- •Какими упругими постоянными характеризуются твердые среды? Что такое волновое сопротивление среды и чем оно определяется?
- •Назовите основные акустические характеристики сред. Поясните механизм затухания акустических волн.
- •Как зависит коэффициент затухания от структуры среды и от частоты колебаний? Какое значение придается затуханию волн в акустическом контроле?
- •Механизм затухания волн в различных средах. Поглощение и рассеяние волн.
- •Отражение и преломление акустических волн на границах раздела сред. Трансформация волн. Критические углы.
- •В чем сущность закона Снеллиуса при падении акустической волны на границу раздела двух сред? в чем сущность коэффициентов отражения и прохождения и от чего они зависят?
- •Как используется наличие критических углов в практике контроля?
- •Как определить угол падения акустических волн при заданном угле ввода пучка в объект? Обратная задача.
- •Особенности отражения волн от свободной границы твердого тела. Обменные углы.
- •Дифракция волн в твердых телах. Явление поляризации для акустических волн.
- •Отражение и прохождение акустических волн при нормальном падении на границу двух сред, разделенных тонким слоем. Просветление границы.
- •2 Модуль
- •В чем состоит физическая сущность пьезоэффекта?
- •Перечислите основные свойства и характеристики пьезоматериалов и дайте их физический смысл.
- •Чем определяется механическая добротность пьезопреобразователей? За счет каких параметров можно реально повысить мощность акустического излучателя?
- •Опишите структуру традиционного электроакустического тракта.
- •Опишите структуру прямого пьезопреобразователя и назначение отдельных элементов.
- •В чем состоит физический смысл коэффициента преобразования? Каким образом можно добиться реального увеличения коэффициента преобразования?
- •Какими преимуществами обладают широкополосные преобразователи? Какие существуют способы расширения полосы пропускания частот для пьезопреобразователей?
- •Каким образом обеспечивается стабильный контакт преобразователя с объектом контроля? Как влияет толщина слоя смазки на чувствительность контроля?
- •Ршх пэп. Причины возникновения шумов преобразователей и способы их уменьшения.
- •Что такое поле излучения преобразователя и чем оно характеризуется? Диаграмма направленности.
- •Что такое ближняя и дальняя зоны преобразователя и чем она характерна? Как можно объяснить наличие осцилляций в ближней зоне преобразователя?
- •Изменится ли направленность акустического поля дискового преобразователя при изменении его диаметра или параметров среды?
- •Поясните методику построения мнимого излучателя для плоскопараллельной задержки.
- •Поясните методику построения мнимого излучателя для наклонной задержки.
- •Какие типы фокусирующих преобразователей используются в практике контроля и в чем их особенность? Какими параметрами характеризуется поле излучения фокусирующего преобразователя?
- •Наклонные, раздельно-совмещенные, хордовые пэп. Конструкции и параметры.
- •Основные характеристики преобразователей и способы их определения.
- •В чем особенность и эффективность преобразователей на фазированных решетках.
- •Модуль 3
- •Физические основы эхо-метода контроля. Структура и принцип действия эхо-импульсного дефектоскопа (требования к узлам).
- •Основные типы искусственных дефектов. Расчет акустического тракта. Ард-диаграммы и их применение.
- •Характеристики эхо-метода контроля: глубина прозвучивания, мертвая зона, разрешающая способность. Способы улучшения характеристик.
- •Чувствительность эхо-метода контроля и способы ее повышения. Что такое уровень чувствительности и какие уровни различают при реализации контроля?
- •Виды сканирования объектов. Шаг и скорость сканирования.
- •Особенности повышения чувствительности эхо-метода при высоком уровне помех.
- •Помехи при эхо-методе контроля и способы их уменьшения.
- •Способы определения координат и оценка размеров и формы дефектов при эхо-методе контроля.
- •Теневой метод контроля. Физические основы метода. Оценка изменения уровня сигнала в зависимости от величины дефекта и параметров объекта контроля.
- •Особенности аппаратуры для реализации теневых методов контроля. Помехи при теневом контроле и способы их уменьшения.
- •На чем основаны временной теневой и дифракционно-временной методы контроля, их возможности?
- •Зеркально-теневой метод контроля. Схемы прозвучивания. Оценка результатов контроля.
- •Измеряемые характеристики и признаки дефектов.
- •Схемы измерения условных размеров дефектов. Погрешности измерения условных размеров. Какие существуют способы задания крайних положений преобразователя при измерении дефектов?
- •Методы распознавания типа дефектов (по условным размерам, по коэффициенту формы).
- •Методы распознавания типа дефектов (по параметрам трансформированных и дифрагированных волн).
- •Стандартные образцы со-1, со-2, со-3, используемые при настройке аппаратуры.
- •Стандартные образцы предприятия (соп), их особенности и виды отражателей.
- •Модуль 4
- •Физический смысл появления акустической эмиссии. Источники появления волн акустической эмиссии и основные параметры аэ.
- •Акустическая эмиссия при деформации материалов и многократном нагружении. Какие требования предъявляются к аппаратуре и преобразователям при контроле методом аэ?
- •Приведите примеры практического применения метода аэ. Какие преимущества имеет метод аэ по сравнению с другими?
- •Методика определения местоположения дефектов по сигналам аэ. Число каналов и топология расположения преобразователей при контроля аэ-методом?
- •Методика проведения аэ-контроля:требования к аппаратуре и условиям проведения контроля, подготовка объекта к контролю, подготовка аппаратуры.
- •Принцип действия ультразвукового эхо-импульсного толщиномера. Виды акустических трактов при контроле толщин изделий?
- •Виды погрешностей при измерениях толщины. Контрольные образцы.
- •Ограничивающие параметры объекта контроля при эхо-импульсной толщинометрии. От каких факторов зависит диапазон измерений в толщиномерах?
- •Методика проведения толщинометрии реальных объектов.
- •Особенности акустического контроля неметаллических и композиционных многослойных конструкций. Дефекты соединений.
- •Сущность, аппаратура и область применения интегральных и локальных методов свободных колебаний.
- •Импедансный метод контроля. Основы метода, аппаратура, возможности и область применения.
- •Велосимметрический метод контроля. Основы методов, аппаратура, возможности и область применения.
- •Акустический контроль физико-механических характеристик материалов (твердость и прочность материалов). Особенности методики и аппаратуры.
- •Особенности контроля прочности бетона и структуры чугуна.
- •Акустический контроль поверхностных характеристик материалов (шероховатость, поверхностно упрочненные слои).
- •Контроль стыковых сварных соединений листовых конструкций и труб.
Особенности контроля прочности бетона и структуры чугуна.
Особенности
акустического контроля физико-механических
характеристик объектов по изменению
скорости и затуханию волн (структура
металлов, межкристаллитная коррозия).По
скорости УЗК. Зависимость прочности от
скорости
где В определяют путем испытания на сжатие девяти или более образцов. Корреляция прочность-скорость сохраняется с изменением водоцементного соотношения, вида цемента, песка, срока службы бетона.
При изменении цементно-песчаного соотношения, упругих свойств заполнителя корреляция нарушается и требуется новое определение В.
Контроль выполняют импульсным методом прохождения на продольных волнах или на головных (односторонний доступ).
Ультразвук применяют также для контроля процесса затвердения бетона.
Особенности контроля структуры чугуна.
Чугун - это сплав железа с углеродом, в котором доля углерода превышает 4,13 %. Различают белый чугун, в котором углерод входит в химическое соединение с железом (цементит), и чугун, в котором углерод выпадает в виде графита. Чаще всего в промышленности применяют именно такой чугун, но иногда используют также белый чугун, обладающий повышенной твердостью.
Контроль структуры чугуна УЗ позволяет определить количество и форму графитных включений. В структуре чугуна может присутствовать графит различных форм. Наиболее высокая прочность у чугуна с мелким шаровидным графитом. Меньше прочность, когда графит имеет хлопьевидную форму (вермикулярный графит), еще меньше при пластинчатом графите (серый чугун).
Структуру чугуна оценивают по скорости и затуханию продольных УЗ-волн. Установлено, что в чугуне с выпавшим графитом скорость УЗ увеличивается с уменьшением содержания графита, уменьшением размеров графитовых включений, изменением их формы от пластинчатой к шаровидной, увеличением количества шаровидных графитных включений к общему содержанию графита, увеличением содержания цементита в металлической основе. Предельно высокое значение скорости УЗ приближается к скорости в стали. Затухание УЗ обычно уменьшается, когда скорость увеличивается.
Структура и химический состав чугуна определяют его механические свойства: прочность (временное сопротивление при растяжении), твердость (используют обычно твердость по Бринеллю НВ), модуль нормальной упругости. Во многих случаях практически важен контроль именно этих свойств, а не структурных характеристик, лежащих в их основе. С учетом этого исследовали корреляционные связи акустических и физико-механических свойств.
Модуль нормальной упругости пропорционален квадрату скорости Е = Ас2. Коэффициент А определяют эмпирически, на него влияют плотность и коэффициент Пуассона материала. В отношении твердости известно, что с ее увеличением скорость звука возрастает (в стали - наоборот), а затухание уменьшается, однако для каждого вида чугуна эта связь в количественном отношении индивидуальна.
Акустический контроль поверхностных характеристик материалов (шероховатость, поверхностно упрочненные слои).
Контроль шероховатости поверхности
Оценка качества поверхности изделий с помощью ультразвука может осуществляться на основе использования различных эффектов:
- затухание волн Рэлея; затухание будет тем больше, чем больше шероховатость и чем острее гребни и впадины неровностей, оставшихся после обработки;
- изменение акустического импеданса пьезопреобразователя, нагруженного на изделие; увеличение высоты неровностей приводит к повышению толщины слоя жидкости между преобразователем и изделием и, как следствие, к изменению входного импеданса поверхности изделия;
- отражение от поверхности УЗ-волн, падающих из жидкой или газообразной Среды; если неровности поверхности нерегулярные, то наблюдается рассеянное отражение; при регулярном характере неровностей, шаг которых соизмерим с длиной волны, происходит дифракция УЗ-волн; в обоих случаях происходит уменьшение амплитуды сигналов, соответствующих геометрическому отражению лучей, что используется для измерения степени шероховатости.
Скорость распространения поверхностных волн уменьшается с увеличением шероховатости поверхности.
В приборах для контроля шероховатости поверхности могут быть использованы все приведенные эффекты. Наиболее точным является способ, основанный на определении отношения амплитуд отраженных импульсов, несущие частоты которых отличаются например в два раза. Отношение амплитуд в этом случае зависит от шероховатости поверхности.