
- •1 Модуль
- •Назовите основные величины, характеризующие акустические волны и поясните их физический смысл и взаимосвязь.
- •Физический смысл тензора деформаций и тензора напряжений. Закон Гука, его физический смысл.
- •Дайте понятие интенсивности и энергии звуковой волны. В чем отличие волновых уравнений для описания бегущих и стоячих волн?
- •Какие типы волн могут распространяться в газовых, жидкостных и твердых средах? Какими физическими величинами определяются скорости распространения упругих волн?
- •Какие виды поверхностных волн могут распространяться на границах раздела сред и в чем их особенность? Опишите возможные способы возбуждения поверхностных волн.
- •В чем особенность нормальных волн и в каких условиях они могут существовать? Физический смысл дисперсии скорости звука. Практические способы возбуждения нормальных волн.
- •При каких условиях могут существовать критические углы на границе сред, в чем их смысл, как их определить, какие явления наблюдаются при этом?
- •Какими упругими постоянными характеризуются твердые среды? Что такое волновое сопротивление среды и чем оно определяется?
- •Назовите основные акустические характеристики сред. Поясните механизм затухания акустических волн.
- •Как зависит коэффициент затухания от структуры среды и от частоты колебаний? Какое значение придается затуханию волн в акустическом контроле?
- •Механизм затухания волн в различных средах. Поглощение и рассеяние волн.
- •Отражение и преломление акустических волн на границах раздела сред. Трансформация волн. Критические углы.
- •В чем сущность закона Снеллиуса при падении акустической волны на границу раздела двух сред? в чем сущность коэффициентов отражения и прохождения и от чего они зависят?
- •Как используется наличие критических углов в практике контроля?
- •Как определить угол падения акустических волн при заданном угле ввода пучка в объект? Обратная задача.
- •Особенности отражения волн от свободной границы твердого тела. Обменные углы.
- •Дифракция волн в твердых телах. Явление поляризации для акустических волн.
- •Отражение и прохождение акустических волн при нормальном падении на границу двух сред, разделенных тонким слоем. Просветление границы.
- •2 Модуль
- •В чем состоит физическая сущность пьезоэффекта?
- •Перечислите основные свойства и характеристики пьезоматериалов и дайте их физический смысл.
- •Чем определяется механическая добротность пьезопреобразователей? За счет каких параметров можно реально повысить мощность акустического излучателя?
- •Опишите структуру традиционного электроакустического тракта.
- •Опишите структуру прямого пьезопреобразователя и назначение отдельных элементов.
- •В чем состоит физический смысл коэффициента преобразования? Каким образом можно добиться реального увеличения коэффициента преобразования?
- •Какими преимуществами обладают широкополосные преобразователи? Какие существуют способы расширения полосы пропускания частот для пьезопреобразователей?
- •Каким образом обеспечивается стабильный контакт преобразователя с объектом контроля? Как влияет толщина слоя смазки на чувствительность контроля?
- •Ршх пэп. Причины возникновения шумов преобразователей и способы их уменьшения.
- •Что такое поле излучения преобразователя и чем оно характеризуется? Диаграмма направленности.
- •Что такое ближняя и дальняя зоны преобразователя и чем она характерна? Как можно объяснить наличие осцилляций в ближней зоне преобразователя?
- •Изменится ли направленность акустического поля дискового преобразователя при изменении его диаметра или параметров среды?
- •Поясните методику построения мнимого излучателя для плоскопараллельной задержки.
- •Поясните методику построения мнимого излучателя для наклонной задержки.
- •Какие типы фокусирующих преобразователей используются в практике контроля и в чем их особенность? Какими параметрами характеризуется поле излучения фокусирующего преобразователя?
- •Наклонные, раздельно-совмещенные, хордовые пэп. Конструкции и параметры.
- •Основные характеристики преобразователей и способы их определения.
- •В чем особенность и эффективность преобразователей на фазированных решетках.
- •Модуль 3
- •Физические основы эхо-метода контроля. Структура и принцип действия эхо-импульсного дефектоскопа (требования к узлам).
- •Основные типы искусственных дефектов. Расчет акустического тракта. Ард-диаграммы и их применение.
- •Характеристики эхо-метода контроля: глубина прозвучивания, мертвая зона, разрешающая способность. Способы улучшения характеристик.
- •Чувствительность эхо-метода контроля и способы ее повышения. Что такое уровень чувствительности и какие уровни различают при реализации контроля?
- •Виды сканирования объектов. Шаг и скорость сканирования.
- •Особенности повышения чувствительности эхо-метода при высоком уровне помех.
- •Помехи при эхо-методе контроля и способы их уменьшения.
- •Способы определения координат и оценка размеров и формы дефектов при эхо-методе контроля.
- •Теневой метод контроля. Физические основы метода. Оценка изменения уровня сигнала в зависимости от величины дефекта и параметров объекта контроля.
- •Особенности аппаратуры для реализации теневых методов контроля. Помехи при теневом контроле и способы их уменьшения.
- •На чем основаны временной теневой и дифракционно-временной методы контроля, их возможности?
- •Зеркально-теневой метод контроля. Схемы прозвучивания. Оценка результатов контроля.
- •Измеряемые характеристики и признаки дефектов.
- •Схемы измерения условных размеров дефектов. Погрешности измерения условных размеров. Какие существуют способы задания крайних положений преобразователя при измерении дефектов?
- •Методы распознавания типа дефектов (по условным размерам, по коэффициенту формы).
- •Методы распознавания типа дефектов (по параметрам трансформированных и дифрагированных волн).
- •Стандартные образцы со-1, со-2, со-3, используемые при настройке аппаратуры.
- •Стандартные образцы предприятия (соп), их особенности и виды отражателей.
- •Модуль 4
- •Физический смысл появления акустической эмиссии. Источники появления волн акустической эмиссии и основные параметры аэ.
- •Акустическая эмиссия при деформации материалов и многократном нагружении. Какие требования предъявляются к аппаратуре и преобразователям при контроле методом аэ?
- •Приведите примеры практического применения метода аэ. Какие преимущества имеет метод аэ по сравнению с другими?
- •Методика определения местоположения дефектов по сигналам аэ. Число каналов и топология расположения преобразователей при контроля аэ-методом?
- •Методика проведения аэ-контроля:требования к аппаратуре и условиям проведения контроля, подготовка объекта к контролю, подготовка аппаратуры.
- •Принцип действия ультразвукового эхо-импульсного толщиномера. Виды акустических трактов при контроле толщин изделий?
- •Виды погрешностей при измерениях толщины. Контрольные образцы.
- •Ограничивающие параметры объекта контроля при эхо-импульсной толщинометрии. От каких факторов зависит диапазон измерений в толщиномерах?
- •Методика проведения толщинометрии реальных объектов.
- •Особенности акустического контроля неметаллических и композиционных многослойных конструкций. Дефекты соединений.
- •Сущность, аппаратура и область применения интегральных и локальных методов свободных колебаний.
- •Импедансный метод контроля. Основы метода, аппаратура, возможности и область применения.
- •Велосимметрический метод контроля. Основы методов, аппаратура, возможности и область применения.
- •Акустический контроль физико-механических характеристик материалов (твердость и прочность материалов). Особенности методики и аппаратуры.
- •Особенности контроля прочности бетона и структуры чугуна.
- •Акустический контроль поверхностных характеристик материалов (шероховатость, поверхностно упрочненные слои).
- •Контроль стыковых сварных соединений листовых конструкций и труб.
На чем основаны временной теневой и дифракционно-временной методы контроля, их возможности?
Временной теневой метод основан на измерении времени пробега импульса через изделие. Наличие дефекта при этом определяется по запаздыванию прихода импульса на приемник в точку В (рис.5.6), т.к. расстояние А1В больше чем А0В.
Установлено, что чувствительность временного метода при малых толщинах и низких частотах ультразвука больше, чем обычного теневого метода, однако она существенно снижается от непостоянства скорости ультразвука в материале изделия.
Реализовать временной теневой метод можно посредством импульсного дефектоскопа со стробирующей системой, позволяющей точно фиксировать время прихода сквозного сигнала.
Д
ифракционно-временной
метод (ДВМ) (рис. 2.3, д) основан на приеме
волн, рассеянных на концах дефекта,
причем могут излучаться и приниматься
как продольные, так и поперечные волны.
На рисунке представлен случай, когда
излучаются поперечные волны, а принимаются
продольные. Практическое применение,
однако, получил вариант, при котором
излучаются и принимаются продольные
волны, поскольку они первыми приходят
на приемник и по этому признаку их легко
отличить от поперечных волн. Главная
информационная характеристика - время
прихода сигнала. Этот метод также
называют времяпролетным, буквально
переводя английское название (time of
flight diffraction - TOFD).
Зеркально-теневой метод контроля. Схемы прозвучивания. Оценка результатов контроля.
Способы реализации зеркально-теневого метода (ЗТМ). Информационный параметр- т ослабление амплитуды отраженных от противоположной поверхности волн.
- прямым преобразователем по первому донному импульсу;
- прямым преобразователем по n - му донному импульсу;
- двумя наклонными преобразователями по донному импульсу поперечной волны;
- двумя наклонными преобразователями по донному импульсу продольной волны;
- прямым преобразователем по отношению амплитуды второго донного сигнала к амплитуде первого донного сигнала.
Схемы прозвучивания изделия при раздельном и совмещенном вариантах расположения УЗ-преобразователей выбираются в зависимости от вида изделия, требуемой чувствительности и др. факторов.
Чувствительность зеркально-теневого метода может быть установлена значением максимальной величины коэффициента выявляемости KД дефектов, еще обнаруживаемых при контроле. На рис.5.5 показан характер изменения амплитуды донных импульсов в зоне без дефекта и с дефектом при перемещении совмещенного или раздельного преобразователей.
Исследование результатов практической реализации всех способов ЗТМ показывает, что:
а) чувствительность способов, использующих наклонные преобразователи, при прочих равных условиях меньше чувствительности способов, использующих прямые преобразователи;
б) при использовании наклонных преобразователей чувствительность тем выше, чем меньше угол ввода УЗ-волн;
в) наименьшей чувствительностью при прочих равных условиях обладает способ, основанный на прозвучивании изделий поперечными волнами посредством наклонных преобразователей, а наибольшей - способ контроля по первому донному импульсу;
г) чувствительность всех способов возрастает с уменьшением глубины залегания дефекта и толщины изделия, а также с увеличением частоты колебаний и диаметра излучателя;
д) при расположении дефекта на акустической оси преобразователя чувствительность возрастает с увеличением направленности поля преобразователя.
В ЗТМ различают предельную и условную чувствительность. Предельную характеризуют максимальной величиной коэффициента выявляемости дефектов KД, еще обнаруживаемых при данной настройке прибора. Условную чувствительность определяют максимальной величиной коэффициента KУ, аналогичного KД и определяющего собой минимальное относительное ослабление донного импульса, регистрируемого индикатором дефектоскопа, т.е.
где U0 - амплитуда донного отражения (1,2..., n-го); Um - амплитуда того же донного отражения, но ослабленного до появления сигнала на индикаторе дефектоскопа (Um<U0).