
- •Місце фізики у сучасному житті.
- •Підрозділи фізики та предмети їх досліджень.
- •Основні типи взаємодій. Їх роль у формуванні всесвіту.
- •Гравітаційна взаємодія, закон всесвітнього тяжіння.
- •Джерело гравітаційної взаємодії. Напруженість та потенціал поля точкової маси.
- •6. Гравітаційна взаємодія поблизу поверхні Землі
- •Електрична взаємодія. Закон Кулона.
- •Джерело електричної взаємодії. Потенціал і напруженість поля точкового заряду.
- •Принцип суперпозиції для гравітаційного та кулонівського поля.
- •Фізичні властивості твердих тіл та рідин.
- •Маса. Зв'язок маси тіла з його вагою. Одиниці виміру маси та ваги.
- •Терези. Типи терезів та вимірювання ваги.
- •13.Маса, як мірило інертності тіла. Другий закон Ньютона.
- •14.Густина, як фізична характеристика речовини. Методи визначення густини.
- •Закон Архімеда. Вплив сили Архімеда на результати вимірів ваги тіла.
- •Матеріальна точка (мт). Визначення положення мт у просторі, радіус-вектор.
- •Характеристики руху. Середня та миттєва швидкість. Нормальне та тангенціальне прискорення. Одиниці виміру швидкості та прискорення.
- •Інерціальні системи. Перший закон Ньютона.
- •Сила. Одиниці виміру сили. Прояви дії сили. Другий закон Ньютона.
- •Імпульс мт та повний імпульс механічної системи. Закон збереження імпульсу.
- •Третій закон Ньютона.
- •Пружна деформація. Закон Гука. Модуль Юнга. Енергія деформованої пружини.
- •Робота та потенціальна енергія. Зв'язок сили з потенціальною енергією мт. Розрахунок роботи.
- •Закон збереження енергії.
- •Однорідне силове поле. Рух мт в однорідному силовому полі.
- •Сили тертя. Сухе та грузле тертя. Рух твердого тіла по похилій площині.
- •Поступальний та обертальний рухи твердого тіла (тт). Кутова швидкість та кутове прискорення.
- •Правило важелів Архімеда.
- •Гідростатика. Фізичні властивості рідини.
- •Закон Паскаля.
- •Закон Архімеда
- •Принцип дії гідравлічного пресу.
- •Гідродинаміка. Теорема про неперервність течії.
- •40. Рівняння Бернуллі та його наслідки
- •41.Підйомна сила крила
- •Рух реальної рідини. Сили внутрішнього тертя, коефіцієнт в’язкості.
- •Рух рідини по трубах. Пропускна спроможність труб.
- •Визначення коефіцієнту в’язкості.
- •Ламінарна та турбулентна течія. Число Рейнольда. Умови ламінарності течії.
- •Предмет дослідження молекулярної фізики. Будова речовин. Визначення вуглецевих одиниць.
- •Моль речовини. Число Авогадро. Характерний розмір молекул.
- •Температура. Визначення температури газовим термометром.
- •Шкала Цельсія та абсолютна шкала температури.
- •50. Рівняння Клапейрона.
- •Ізопроцеси. Закон Бойля-Маріотта
- •Закон Гей-Люссака.
- •53.Закон Шарля.
- •Парціальний тиск. Закон Дальтона.
- •55. Молекулярно-кінетична теорія газового тиску
- •Розподіл середньої енергії молекул за ступенями вільності.
- •Внутрішня енергія ідеального газу.
- •Перший початок термодинаміки. Робота газу при сталому тиску.
- •Теплоємність газу за сталого об’єму та сталого тиску.
- •Закон Дюлонга та Пті.
- •Барометрична формула.
- •Адіабатичний процес. Рівняння адіабати.
- •Цикл Карно. Коефіцієнт корисної дії теплової машини.
- •Теплові властивості реальних середовищ. Температурна діаграма процесу нагрівання речовини.
- •Питома теплота плавлення та пароутворення речовини.
- •66. Рівняння Ван-дер-Ваальса. Ізотерми Ван-дер-Ваальса.
- •Класифікація матеріалів за електричними властивостями. Провідники, діелектрики, напівпровідники та надпровідники.
- •Капілярні явища. Сила поверхневого натягу, висота підняття рідини в капілярі.
- •Поле точкового заряду. Силові лінії електричного поля. Геометрична інтерпретація полів силовими лініями.
- •Електричний диполь. Дипольний момент. Поле диполя.
- •Теорема Гауса.
- •Полярні і неполярні молекули. Поляризація речовини.
- •73. Вплив речовини діелектрика на електричне поле
- •П’єзоелектрики, сегнетоелектрики, піроелектрики.
- •Поведінка провідників в електричному полі. Електроємність провідників. Одиниці вимірювання електроємності.
- •Джерело електрорушійної сили (гальванічний елемент, електрогенератори).
- •Конденсатори. Ємність плаского конденсатора.
- •Паралельне та послідовне з’єднання конденсаторів.
- •79.Енергія плоского конденсатора
- •Постійний електричний струм. Середня швидкість спрямованого руху електронів.
- •Густина струму. Закон Ома у локальній формі.
- •Провідність та питомий опір речовини.
- •Електроопір лінійних провідників. Закон Ома для ділянки кола.
- •Закон Джоуля-Лєнца.
- •Паралельне та послідовне з’єднання резисторів.
- •Перше та друге правила Кірхгофа на прикладах.
- •Термоелектричні явища. Ефекти Зеєбека та Пельт’є.
- •Явища термоелектронної емісії.
- •Електровакуумна лампа діод. Вольт-амперна характеристика вакуумного діоду.
- •90.Електронна лампа тріод
- •Магнітне поле. Закон Біо-Савара-Лапласа.
- •Напруженість та магнітна індукція. Сила Лоренца.
- •Магнітні поля колового та нескінченного струму.
- •Сила Ампера.
- •Закон циркуляції магнітного поля.
- •96.Соленоїд. Енергія та індуктивність довгого соленоїда.
- •97. Потік магнітного поля. Закон електромагнітної індукції Фарадея. Явище самоіндукції.
- •Принцип дії електричного генератора змінного струму.
- •Класифікація матеріалів за магнітними властивостями. Феромагнетики, парамагнетики та діамагнетики.
- •Принципи мас спектрометрії.
- •Поведінка провідників у змінному полі.
- •Електричні прилади і їх використання.
- •Променева трубка. Принцип роботи осцилографа. Фігури Ліссажу.
- •У мови виникнення періодичного руху.
- •Найпростіші коливальні системи. Математичний, пружинний та фізичний маятники.
- •Енергія маятників. Рівняння руху маятників.
- •Власні частоти коливань математичного, пружинного та фізичного маятників.
- •Електричні коливання. Електричний коливальний контур.
- •Згасаючі електричні коливання.
- •Активний та реактивний опори.
- •Вимушені коливання. Явище резонансу.
- •Відкритий коливальний контур. Випромінювання електромагнітних хвиль.
- •Рівняння електромагнітного поля.
- •Принцип радіозв’язку. Модульований радіосигнал
- •Світлова хвиля. Довжини і частоти хвиль світлового діапазону.
- •Енергія світлової хвилі. Вектор Пойтінга.
- •Принцип Ферма розповсюдження світлових хвиль. Закони відбиття та заломлення світлових хвиль.
- •Фотометрія. Сила світла, освітленість, світимість – визначення та одиниці виміру
- •Геометрична оптика. Променеве наближення Чотири закони геометричної оптики.
- •Тонка лінза. Оптична сила, фокусна відстань, фокальна площина тонкої лінзи.
- •Формула тонкої лінзи той, що збирає і той, що розсіює.
- •Побудова оптичних зображень за допомогою тонкої лінзи.
- •Інтерференція світла і її умови.
- •Інтерференція світла від двох когерентних джерел.
- •Інтерференція світла на тонких плівках. Просвітлення оптики.
- •Дисперсія світла. Дослідження Ньютона.
- •Дифракція світла. Дифракційна гратка.
- •Елементи квантової фізики. Принцип невизначеності.
- •Взаємодія світла з речовиною. Поглинання та випромінювання світла атомами. Постулати Бора.
- •Серії випромінювання. Умови квантування.
- •Потенціальна яма. Тунельний ефект.
- •Потенціальний бар’єр.
- •Ефект Компотна.
- •Явище фотоефекту. Формула Ейнштейна для фотоефекту.
- •Будова атому. Досліди Резерфорда.
- •Радіоактивність. Закон радіоактивного розпаду.
- •Радіоактивне випромінювання та взаємодія його з речовиною.
- •Взаємозв’язок маси та енергії матерії. Атомний розпад. Ланцюгова реакція.
- •Атомна енергетика
Явище фотоефекту. Формула Ейнштейна для фотоефекту.
Фотоефе́кт — явище «вибивання» світлом електронів із металів. Щоб вивільнити електрон із металу йому необхідно передати енергію, більшу за роботу виходу.
Теоретичне пояснення явища дав Альберт Ейнштейн, за що отримав Нобелівську премію. Ейнштейн використав гіпотезу Макса Планка про те, що світло випромінюється порціями (квантами) із енергією, пропорційною частоті.
Припустивши, що світло і поглинається такими ж порціями, він зміг пояснити залежність швидкості вибитих електронів від довжини хвилі опромінення.
,
де ν — частота світла, h — стала Планка, m — маса електрона, v — його швидкість, A — робота виходу.
Робота Ейнштейна мала велике значення для розвитку ідей квантової механіки взагалі та квантової оптики зокрема.
Будова атому. Досліди Резерфорда.
А́том — найменша частинка хімічного елемента, яка зберігає всі його хімічні властивості. Атом складається з щільного ядра з позитивно заряджених протонів та електрично нейтральних нейтронів, яке оточене набагато більшою хмарою негативно заряджених електронів. Коли число протонів відповідає числу електронів, атом електрично нейтральний; в іншому випадку це є іон, з певним зарядом. Атоми класифікують відповідно до числа протонів та нейтронів: число протонів визначає хімічний елемент, а число нейтронів визначає нуклід елементу.
За цією моделлю:
Атоми складаються із елементарних частинок (протонів, електронів, та нейтронів). Маса атома в основному зосереджена в ядрі, тому більша частина об'єму відносно порожня. Ядро оточене електронами. Атоми одного елемента з різною кількістю нейтронів називаються ізотопами.
У центрі атома знаходиться крихітне, позитивно заряджене ядро, що складається з протонів та нейтронів.
Ядро оточене електронною хмарою, яка займає більшу частину його об'єму.
Кожна орбіталь може містити до двох електронів, що характеризуються трьома квантовими числами: основним, орбітальним і магнітним.
Учені завжди припускали, ніби окремі атоми неподільні і незмінні. Але Резерфорд зміг показати, що коли атом випромінює альфа- або бета-промені, він перетвориться в атом іншого сорту. Проте Резерфорд і Содді провели цілу серію експериментів з радіоактивним розпадом і трансформували уран в свинець. Також Резерфорд виміряв швидкість розпаду і сформулював важливу концепцію "напіврозпаду". Ця серія відкриттів принесла Резерфорду в 1908 році Нобелівську премію, але його найбільше досягнення було ще попереду. Він відмітив, що швидкорухомі альфа-частки здатні проходити крізь тонку золоту фольгу
Потім шляхом складного, але цілком переконливого математичного аналізу він показав єдиний шлях, яким можна було пояснити результати експериментів: атом золота складався майже повністю з порожнього простору, а практично вся атомна маса була сконцентрована в центрі, в маленькому "ядрі" атома.
Радіоактивність. Закон радіоактивного розпаду.
Радіоакти́вність— явище спонтанного перетворення нестійкого ізотопа хімічного елемента в інший ізотоп (зазвичай іншого елемента) (радіоактивний розпад) шляхом випромінювання гамма-квантів, елементарних частинок або ядерних фрагментів.
Радіоактивність відкрив Беккерель. Вчений працював із солями урану і загорнув свої зразки разом із фотопластинами в непрозорий матеріал. Фотопластини виявилися засвіченими, хоча доступу світла до них не було. Беккерель зробив висновок про невидиме оку випромінювання солей урану. Він дослідив це випромінювання і встановив, що інтенсивність випромінювання визначається тільки кількістю урану в препараті і абсолютно не залежить від того, в які сполуки він входить. Тобто ця властивість властива не сполукам, а хімічному елементу урану.
Встановлено, що всі хімічні елементи з порядковим номером, більшим за 83 — радіоактивні.
Природна радіоактивність — спонтанний розпад ядер елементів, що зустрічаються в природі.
Штучна радіоактивність — спонтанний розпад ядер елементів, отриманих штучним шляхом, через відповідні ядерні реакції.
Якщо в початковий
момент часу (t= 0) було Nо
радіоактивних ядер, то за період
піврозпаду Т кількість їх стане вдвічі
меншою
ще через такий самий час Т їх уже буде
і т.д. Тобто за n
періодів піврозпаду
радіоактивними залишаться лише N
ядер:
Цей вираз є законом радіоактивного розпаду.