
- •Осязательный органолептический анализ
- •Организация сенсорных исследований
- •Этапы и порядок проведения органолептического анализа
- •Методы сенсорного анализа
- •Тема №2 Оптические методы анализа
- •Рефрактометрический метод анализа
- •Поляриметрический метод анализа
- •Фотометрические методы анализа.
- •Закон Бугера-Ламберта-Бера
- •Фотонефелометрический анализ и турбодиметрия
- •Фотофлуроуметрический метод анализа.
- •Основы спектроскопии
- •Методы атомной спектроскопии
- •Атомно-абсорбционная спектроскопия
- •Атомизаторы
- •Монохроматор
- •Атомно-эмисионная спектроскопия
- •Качественный анализ
- •Количественный анализ
- •Практическое применение
- •Оптическая спектроскопия. Икс инфракрасная спектроскопия.
- •Источники излучения
- •Подготовка проб
- •Монохроматоры
- •Детекторы
- •Устройство ик спектрометра
- •Качественный анализ
- •Количественный анализ
- •Тема №4 Микроскопические методы анализа Оптическая микроскопия
- •Электронная микроскопия.
- •Сканирующая зондовая микроскопия (сзм).
- •Сканирующий туннельный микроскоп
- •Атомно-силовой микроскоп
- •Измерение характеристик проводящих материалов.
- •Двухзондовый метод
- •Четырёхзондовый метод.
- •Однозондовый метод
- •Бесконтактные методы
- •Измерение диэлектрических свойств
- •Измерение диэлектрических свойств жидкостей
- •Измерение диэлектрической проницаемости порошков
- •Измерение диэлектрических свойств твёрдых тел.
- •Термический анализ
- •Дифферинциальный термический анализ (дта)
- •Термогравиметрический анализ
- •Качественный и количественный термический анализ
- •Определение чистоты химических веществ методом дта
- •Химические сенсоры
- •Полупроводниковые сенсоры.
- •Сенсоры на основе мдп-структур
- •Тепловые сенсоры
- •Пироэлектрические сенсоры
- •Термокаталитические сенсоры
- •Массочувствительные сенсоры
- •Сенсор на основе твёрдых электролитов
- •Потенциометрические сенсоры
- •Потенциометрические сенсоры. Устанавливаемые на основе мдп, моп-структур
- •Амперометрические сенсоры
Сенсоры на основе мдп-структур
МДП-структуры металлический затвор которых выполнен из каталитически активных переходных металлов (платина, никель, палладий) изменяют свои характеристики под действием содержащихся в атмосфере газов. МДП – металл, диэлектрик, полупроводник.
Существует несколько модификаций сенсоров на МДП-структурах. Для увеличения адсорбционной чувствительности применяют модифицированные МДП-структуры.
В палладиевом затворе создаются поры диаметром 1.5-2 мкм наличие которых облегчает доступ газообразных частиц к диэлектрику, а так же увеличивает сорбционную поверхность. Перфорированный затвор выполняет роль катализатора, который усиливает ионную диссоциацию ионных газовых частиц.
Для увеличения селективности на поверхность металла наносят слой специальных веществ.
В качестве диэлектрика у сенсоров на базе МДП-структур может использоваться воздушный зазор, попадая в воздушный зазор между полупроводником и затвором исследуемый газ изменяет диэлектрическую проницаемость воздуха в зазоре, а так же при сорбции на поверхности полупроводника формирует дипольный слой, что приводит к изменению напряжения транзистора.
В другом варианте газового датчика с зазором применяют перфорированный сетчатый металлический затвор.
На слой диэлектриков 1 наносят металлический подслой 2 толщиной требуемого воздушного зазора, на подслой наносится металлический затвор 3 (платина) на котором создаются поры после чего вытравливают участок подслоя над канало между стоком и истоком.
Для повышения чувствительности перфорированный затвор покрывают адсорбционным покрытием 4. В этом случае анализируемый газ проникает в полость под затвором и взаимодействуют с его внутренней поверхностью, так же как и с внешней, и боковой покрытых чувствительным слоем.
Проблемы селективности решают так же использованием электронных носов, представляющих собой матрицу полупроводниковых сенсоров имеющих различную чувствительность к различным газовым компонентам.
Тепловые сенсоры
Принцип действия ТС основан на регистрации изменения тепло-физических характеристик чувствительного элемента в результате внешнего воздействия. Среди ТС наибольшее распространение получили пироэлектрические и термокаталитические
Пироэлектрические сенсоры
Пироэлектричество – явление возникновения нового заряда у некоторых кристаллов при применении к ним внешнего теплового воздействия вдоль соответствующих кристаллических направлений.
Тепловое воздействие на кристалл вызывает изменение его температуры, которое приводит к перемещению ионов в решётке, в результате чего образуется новый заряд положительный на одной стороне кристалла и отрицательный на другой.
Скорость изменения средней температуры пироэлектрической структуры определяет величину возникающего на кристалле заряда.
ПС являются микроколориметрами в качестве выходного сигнала в таких датчиках используют изменение напряжения или изменения тока между электродами, а в качестве чувствительного элемента чаще применяют LiTiO3.
Схема пироэлектрического сенсора.
Нагревательный электрод используется для введения в систему регулирующего количества тепла, что приводит к линейному изменению температуры датчика с постоянной скоростью. Один из элементов датчика покрывается катализатором или выполняется из каталитически активного металла (Pt, Ni). Для протекания реакция окисления детектируемых газов в результате которой выделяется или поглощается некоторое количество тепла, что приводит к изменению выходного сигнала.
Форма сигнала сенсора
Каждый пик соответствует какой-либо реакции, протекающей на катализаторе при определённой температуре. Чувствительность по водороду таких сенсоров составляет 10-9%.