
- •Осязательный органолептический анализ
- •Организация сенсорных исследований
- •Этапы и порядок проведения органолептического анализа
- •Методы сенсорного анализа
- •Тема №2 Оптические методы анализа
- •Рефрактометрический метод анализа
- •Поляриметрический метод анализа
- •Фотометрические методы анализа.
- •Закон Бугера-Ламберта-Бера
- •Фотонефелометрический анализ и турбодиметрия
- •Фотофлуроуметрический метод анализа.
- •Основы спектроскопии
- •Методы атомной спектроскопии
- •Атомно-абсорбционная спектроскопия
- •Атомизаторы
- •Монохроматор
- •Атомно-эмисионная спектроскопия
- •Качественный анализ
- •Количественный анализ
- •Практическое применение
- •Оптическая спектроскопия. Икс инфракрасная спектроскопия.
- •Источники излучения
- •Подготовка проб
- •Монохроматоры
- •Детекторы
- •Устройство ик спектрометра
- •Качественный анализ
- •Количественный анализ
- •Тема №4 Микроскопические методы анализа Оптическая микроскопия
- •Электронная микроскопия.
- •Сканирующая зондовая микроскопия (сзм).
- •Сканирующий туннельный микроскоп
- •Атомно-силовой микроскоп
- •Измерение характеристик проводящих материалов.
- •Двухзондовый метод
- •Четырёхзондовый метод.
- •Однозондовый метод
- •Бесконтактные методы
- •Измерение диэлектрических свойств
- •Измерение диэлектрических свойств жидкостей
- •Измерение диэлектрической проницаемости порошков
- •Измерение диэлектрических свойств твёрдых тел.
- •Термический анализ
- •Дифферинциальный термический анализ (дта)
- •Термогравиметрический анализ
- •Качественный и количественный термический анализ
- •Определение чистоты химических веществ методом дта
- •Химические сенсоры
- •Полупроводниковые сенсоры.
- •Сенсоры на основе мдп-структур
- •Тепловые сенсоры
- •Пироэлектрические сенсоры
- •Термокаталитические сенсоры
- •Массочувствительные сенсоры
- •Сенсор на основе твёрдых электролитов
- •Потенциометрические сенсоры
- •Потенциометрические сенсоры. Устанавливаемые на основе мдп, моп-структур
- •Амперометрические сенсоры
Четырёхзондовый метод.
Является наиболее распространённым при контроле качества проводящих материалов, в основном полупроводников. Использование этого метода обусловлено высокими метрологическими показателями и простой конструкции измерительных средств. Для его применения не требуется создание токовых омических контактов к образцу, возможно измерение удельного сопротивления объёмных образцов разнообразной формы и размеров, а так же Ро тонких слоёв. Условием измерения – наличие плоского участка поверхности, линейные размеры которого превосходят линейные размеры системы зондов (диапазон 10-4 до 104). Основан на явлении растекания токов в точке контакта.
На поверхности образца вдоль одной линии размещаются четыре зонда через пару контактов (чаще всего зонд 1 и 4) пропускают ток, а между двумя другими контактами измеряют разность потенциалов. На практике межзондовые расстояния делают равными.
ρ =U*2πS/I если межзлондовые расстояния равны.
ρ =U*S*FL/I в общем случае
FL – может иметь значения 2пи, 4пи, 6пи в зависимости от пары зондов.
Линейное расположение зондов по образцу не является единственно возможным. Иногда необходимо производить измерения на образцах малого размера, используя более компактную схему размещения зондов по вершинам квадрата со стороной S.
ρ =(2πS/2-корень2)*(U/I)
Ток пропускают через зонды образующие одну сторону квадрата, а разность потенциалов измеряют на другой паре зондов. Такая конструкция обеспечивает дополнительную возможность повышения точности измерений за счёт кратности зондов. Пропуская ток последовательно через каждую пару контактов по контуру квадрата и усредняя полученные четыре значения Ро, можно снизить уровень случайной погрешности в два раза. Приведённая формула для расчёта Ро применима только для полубесконечного образца. На практике измеряемые образцы имеют конечные геометрические размеры и если удалённость зондов от границ образца становится соизмеримой с межзондовым расстоянием, то измеряемое ро будет отличаться от истинного. В общем случае для вычисления истинного Ро вводят поправочные множители, учитывающие геометрические размеры образца.
Однозондовый метод
Схема однозондового измерения Ро получается из схемы двухзондового если одну из клем вольтметра соединить с токопроводящим контактом.
Устанавливоемый на поверхности образца зонд является подвижным, то есть расстояние Х можно изменять. Если провести измерение падения напряжения U между контактом К1 и зондом, при двух различных расстояний Х то величину удельного сопротивления можно найти по формуле:
ρ =(S/I)*(Ux1-Ux2)/(x1-x2)
S – площадь поперечного сечения образца,
Ux1 и Ux2 – падение напряжения в точках x1 и x2
Влияние сопротивления контактов на результаты измерений удельного сопротивления будет таким же, как и в случае измерения двухзондовым методом. Можно использовать для проверки однородности измеряемого образца, определение в неоднородном по длине образце зависимости удельного сопротивления от Х проверки омичности контактов и определение величины сопротивлений токопроводящих контактов.
Омический контакт, это контакт между и полупроводником характеризующийся линейной симметричной вольтамперной характеристикой (ВАХ). Если ВАХ является асимметричной, не линейной то контакт является не омическим, а выпрямляющим.
Зависимость 1 – соответствует однородному образцу с сопротивлением Rk1, т.е. с омическим контактом.
Зависимость 2 – соответствует неоднородному образцу с омическим контактом k1.
Зависимость 3 – однородному образцу с выравнивающим контактом k1, т.е. контактом имеющим сопротивление не равное 0.
Зависимость 4 – неоднородный образец с неомисческим контактом.
Все указанные зависимости соответствуют образцам с омическими контактами K2. Если k2 неомичен, то х=а будет наблюдаться скачок напряжения.