
- •Осязательный органолептический анализ
- •Организация сенсорных исследований
- •Этапы и порядок проведения органолептического анализа
- •Методы сенсорного анализа
- •Тема №2 Оптические методы анализа
- •Рефрактометрический метод анализа
- •Поляриметрический метод анализа
- •Фотометрические методы анализа.
- •Закон Бугера-Ламберта-Бера
- •Фотонефелометрический анализ и турбодиметрия
- •Фотофлуроуметрический метод анализа.
- •Основы спектроскопии
- •Методы атомной спектроскопии
- •Атомно-абсорбционная спектроскопия
- •Атомизаторы
- •Монохроматор
- •Атомно-эмисионная спектроскопия
- •Качественный анализ
- •Количественный анализ
- •Практическое применение
- •Оптическая спектроскопия. Икс инфракрасная спектроскопия.
- •Источники излучения
- •Подготовка проб
- •Монохроматоры
- •Детекторы
- •Устройство ик спектрометра
- •Качественный анализ
- •Количественный анализ
- •Тема №4 Микроскопические методы анализа Оптическая микроскопия
- •Электронная микроскопия.
- •Сканирующая зондовая микроскопия (сзм).
- •Сканирующий туннельный микроскоп
- •Атомно-силовой микроскоп
- •Измерение характеристик проводящих материалов.
- •Двухзондовый метод
- •Четырёхзондовый метод.
- •Однозондовый метод
- •Бесконтактные методы
- •Измерение диэлектрических свойств
- •Измерение диэлектрических свойств жидкостей
- •Измерение диэлектрической проницаемости порошков
- •Измерение диэлектрических свойств твёрдых тел.
- •Термический анализ
- •Дифферинциальный термический анализ (дта)
- •Термогравиметрический анализ
- •Качественный и количественный термический анализ
- •Определение чистоты химических веществ методом дта
- •Химические сенсоры
- •Полупроводниковые сенсоры.
- •Сенсоры на основе мдп-структур
- •Тепловые сенсоры
- •Пироэлектрические сенсоры
- •Термокаталитические сенсоры
- •Массочувствительные сенсоры
- •Сенсор на основе твёрдых электролитов
- •Потенциометрические сенсоры
- •Потенциометрические сенсоры. Устанавливаемые на основе мдп, моп-структур
- •Амперометрические сенсоры
Атомно-силовой микроскоп
Атомно-силовой микроскоп (1986 г.), сходен с принципом действия туннельного микроскопа. Измеряет силу связи атомов. Приближение иглы приводит к тому, что атомы иглы всё сильнее притягиваются к атомам образца, сила притяжения будет возрастать пока игла и поверхность не сблизятся настолько, что их электронные облака начнут электростатически отталкиваться, при дальнейшем сближении электростатическое отталкивание экспоненциально ослаблсяет силу притяжения. Эти силы уравновешиваются на расстоянии между атомами 0.2 нм. В качестве зонда АСМ обычно используется алмазная игла с радиусом закругления менее 10 нм, закреплённая вертикально на конце горизонтальной пластинки – консоли.
Острие сканирующей иглы называется tip, а консоль – cantilever. При изменении силы действующей между поверхностью и остриём консоль откланяется и это регистрируется датчиком (лазерный луч). Лазерный луч отражается на фотодиот, показания затем передаются на компьютер. Преимущество – возможность исследовать структуру электропроводящих образцов и не электропроводящих материалов.
Разновидности АСМ:
1) Магнитносиловой микроскоп, в качестве зонда используется намагниченное остриё. Его взаимодействие с поверхностью образца позволяет регистрировать магнитные микрополя и представлять их в виде карты намагниченности.
2) Электросиловой микроскоп, остриё и образец рассматриваются как конденсатор, и измеряется изменение ёмкости вдоль поверхности образца.
3) Сканирующий тепловой микроскоп. Регистрирует распределение температуры по поверхности образца, разрешение достигает 50 нм.
4) Сканирующий фрикционный микроскоп. Зонд скребётся по поверхности, оставляя карту сил трение.
5) Магнитно резонансный микроскоп.
6) Атомносиловой акустический микроскоп.
№4 Физические методы исследований.
Разделяют электрофизические и термические методы.
Измерение характеристик проводящих материалов.
Методы измерения удельного сопротивления. Основаны на определении разности электрических потенциалов на некотором участке образца, через который пропускается электрический ток. Существуют контактные и бесконтактные методы удельного сопротивления, метод измерения выбирается с учётом получения требующейся информации особенностями исследуемого материала, возможности изготовления электрических контактов, геометрической формы образца, метрологических характеристик метода исследования. В идеальном случае измерение характеристик материалов не должно приводить к разрушению образца и требовать его специальной обработки.
Двухзондовый метод
Используется для определения удельного сопротивления образцов правильной геометрической формы с известным поперечным сечением, например: используется для контроля распределения ρ (удельное сопротивление) по длине слитков полупроводникового материала. Диапазон измеряемых значений 10-3 до 104 ом*см.
При использовании двухзондового метода на торцевых гранях образца изготавливают омические контакты, через которые пропускают электрический ток вдоль образца, на одной из поверхностей вдоль линии тока устанавливают два контакта в виде металлических иголок-зондов, имеющих малую площадь соприкосновения с поверхностью, между ними измеряется разность потенциалов. Если образец однородный, то его удельное сопротивление определяют по формуле:
ρ =U12A/I*S
S – расстояние между зондами.
А – площадь поперечного сечения.
I – сила тока.
Ток через образец подаётся от регулируемого источника постоянного тока. Сила тока измеряется миллиамперметром, а разность потенциалов электронным цифровым вольтметром с высоким входным сопротивлением. Условие применения двухзондового метода для количественного определения Ро – одномерность пространственного распределения эквипотенциальных линий тока ( наличие градиента сопротивления по образцу и неточное соблюдение геометрических размеров приводит к возрастанию погрешности измерения).