Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
специально для Насти).doc
Скачиваний:
0
Добавлен:
26.12.2019
Размер:
1.94 Mб
Скачать

Качественный анализ

Качественный анализ используется для решения задач различного типа. Ик-спектр позволяет установить природу вещества, сравнивают экспериментальный спектр неизвестного вещества со спектрами, имеющимися в спектральной библиотеке. Ик-спектр позволяет выяснить отвечает ли строение вещества предлагаемой формуле, а также выбрать среди нескольких структур наиболее вероятную. Можно предположить структуру вещества. При исследовании структуры веществ методом ИК-спектроскопии необходимо придерживаться следующих основных положений:

  1. Для регистрации ИК-спектра следует использовать чистое вещество;

  2. Необходимо знать дополнительную информацию о веществе (какой класс веществ и т.п.)

  3. Отсутствие полосы в некоторой области частот – надежное доказательство того, что соответствующий структурный фрагмент в молекуле отсутствует. Однако, наличие полосы еще не свидетельствует, что в молекуле имеется данная группа.

  4. Для рассматриваемой группы следует найти все её характеристические спектральные полосы

  5. В первую очередь необходимо исследовать полосы в тех областях спектра, где их мало.

  6. Достоверное отнесение структуры возможно лишь тогда, когда все характеристические полосы проидентифицированы и имеется спектр аналогичного построенного соединения для сравнения.

Данный метод чаще всего используют совместно или в сочетании других методов.

Количественный анализ

Для количественного анализа, средняя ИК-область не столь пригодна как УФ или видимая. Интенсивность источников излучений здесь невелика. Чувствительность детекторов невелика. Сложность создает очень малая толщина кювет, которую трудно воспроизвести или измерить. Уровень рассеянного излучения в ИК-области значительно выше чем в УФ и видимой. Тщательная градуировка с использованием стандартных образцов, а также применение современной аппаратуры позволяют в какой-то степени преодолеть эти трудности и использовать ИК-спектроскопию для количественного анализа. С помощью данного метода определяют отдельные ароматические углеводороды, глюкозу в сыворотках крови, загрязнители воздуха (СО, ацетон, атилен-оксид, хлороформ). Большое значение для Ик-анализа имеет ближняя ИК-область. Методом спектроскопии в ближней ИК-области можно непосредственно определять октановое число бензина.

Тема №4 Микроскопические методы анализа Оптическая микроскопия

Микроскоп – это оптический прибор для получения увеличенных изображений объектов.

Микроскоп состоит из двух систем из окуляра и объектива. Объектив расположен близко к образцу (эпсилон). Создает первое увеличенное изображение объекта (эпсилон ’). Это изображение увеличивается в 2 или более раз для глаза смотрящего эпсилон''. На сетчатке формируется изображение эпсилон''' под значительно большим углом, что и определяет большое увеличение микроскопа.

1677 год изобретен микроскоп, Ливенгук впервые увидел простейшие организмы, просматривал пробу воды из канавки. В современных микроскопах применяются сложные оптические системы, а также создаются специальные условия освещения объектов. В результате такой микроскоп может увеличивать в несколько тысяч раз. Nоптприблизительно равно 10*10*10.

Если объект освещается обычным белым светом, то изображение объекта получается не резким. В системе линз оптические пучки лучей разного цвета не совпадают, они имеют разный путь, в результате изображение для каждой длинны волны получается сдвинутым, так как оптическая система разлагает белый свет в спектр. В результате мелкие детали становятся не различимы, чтобы организовать монохроматическое освещение в микроскопах используют специальные лампы и оптические фильтры, наиболее приближенные к монохроматическому свету одной длинны волны является излучения некоторых лазеров. Даже в случае монохроматического освещения существует предел разрешающей способности микроскопа, этот предел обусловлен волновой природой света, которая проявляется в дифракции световой волны на краях линз оптической системы.

Рисунок. А – общий вид дифракционной картины при наблюдении двух мелких объектов на небольшом угловом расстоянии. Б – предел разрешения двух точек по Реллею.

В оптической микроскопии для характеристики возможности увеличения фактической микроскопии используют понятия предельный угол разрешения и разрешающая способность. Предельный угол разрешения это угол при котором первое тёмноё дифракционной картины проходит через светлый центр второго, зависит от ƛ освещающего объекта, при этом минимальное разрешаемое микроскопом расстояние определяется по формуле:

Emin=ƛ/2А

A – числовая опертура. A≤1, зависит от материала и материала линзы.

Разрешающая способность микроскопа это величина обратная предельному углу разрешения. Правило Реллея – предельное разрешение оптического микроскопа не может быть больше половины длинны волны освещающего объект света.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]