
- •Линейная зависимость векторов
- •Компланарные векторы
- •Признак компланарности трех векторов
- •Правые и левые тройки векторов в трёхмерном пространстве
- •Свойства векторного произведения.
- •Необходимое и достаточное условие коллинеарности двух векторов.
- •Геометрический смысл смешанного произведения
- •Свойства смешанного произведения:
- •Необходимое и достаточное условие компланарности трех векторов.
- •Прямая в пространстве – понятие.
- •Направляющий вектор прямой – определение, примеры, иллюстрации.
- •Канонические уравнения прямой в пространстве – описание и примеры.
- •Параметрические уравнения прямой в пространстве – описание и примеры.
- •Угол между прямой и плоскостью - определение.
- •Пучок плоскостей – определение.
- •Уравнение пучка плоскостей – решение задач.
- •Расстояние от точки до прямой – определение.
- •Расстояние между скрещивающимися прямыми – определение.
- •§1. Аксиоматика линейных пространств.
- •Базис и размерность линейного пространства
Правые и левые тройки векторов в трёхмерном пространстве
Рассмотрим упорядоченную
тройку некомпланарных векторов
в
трёхмерном пространстве. Совместим
начала этих векторов в точке
(то
есть выберем произвольно в пространстве
точку
и
параллельно перенесём каждый вектор
так, чтобы его начало совпало с точкой
).
Концы векторов, совмещённых началами
в точке
,
не лежат на одной прямой, так как векторы
некомпланарны. Рассмотрим плоскость
—
единственную плоскость, проходящую
через концы векторов, совмещённых
началами в точке
.
Тогда можно в плоскости
провести
через концы векторов
,
совмещённых началами в точке
,
единственную окружность и
выяснить направление обхода трёх точек
на окружности, смотря на неё с одной из
сторон от плоскости.
Упорядоченная тройка некомпланарных векторов в трёхмерном пространстве называется правой, если наблюдателю, находящемуся по одну сторону с точкой от плоскости , обход концов приведённых в общее начало векторов в указанном порядке кажется совершающимся в плоскости по часовой стрелке.
B противном случае — левая тройка. В этом случае наблюдателю, находящемуся с той же стороны от плоскости , обход концов таких векторов будет казаться совершающимся против часовой стрелки.
Другое определение связано с правой рукой человека (см. рисунок), откуда и берётся название.
Все правые между собой (и левые между собой) тройки векторов называются одинаково ориентированными.
Заметим, что определения «правой» и «левой» тройки векторов не зависят от хиральности рассматриваемой системы координат; более того, они вообще не требуют задания в рассматриваемом пространстве какой-либо системы координат, как и не требует этого само векторное произведение.
Правые и левые тройки некомпланарных векторов |
Для дальнейшего изучения свойств пространства необходимо ввести определение ориентации пространства. Строгая теория, касающаяся этого понятия не очень сложна, но достаточно суха. В связи с этим ограничимся лишь некоторыми “качественными” пояснениями. Итак, все упорядоченные некомпланарные тройки векторов могут быть разбиты на два непересекающихся класса: правые тройки и левые тройки. Определение 1 :: Упорядоченная тройка некомпланарных векторов а1, а2, а3 называется правой, если наблюдателю, находящемуся внутри телесного угла, образованного этими векторами, кратчайшие повороты от а1 к а2 и от а2 к а3 кажутся происходящими против часовой стрелки. Если повороты происходят по часовой стрелке, то тройка – левая. |
Есть и ещё один способ разделить эти два класса: Правило правой руки: Совместите начала всех векторов тройки в одной точке. Представьте, что в этой точке находится ладонь Вашей правой руки. Совместите большой палец с первым вектором базиса, а указательный – со вторым. Если теперь вы сможете совместить средний палец с третьим вектором, то рассматриваемая тройка векторов – правая. Если нет – левая. Выбрав один из двух классов и назвав все входящие в него базисы “положительными” мы зададим ориентацию пространства. |
ДЕКАРТОВА ПРЯМОУГОЛЬНАЯ СИСТЕМА КООРДИНАТ
ортонормированная - прямолинейная система координат в евклидовом пространстве.
Д. п. с. к. на плоскости задается двумя взаимно перпендикулярными прямыми - осями координат, на каждой из к-рых выбрано положительное направление и задан отрезок единичной длины. Точка пересечения осей координат (О)наз. началом координат. Одна из осей ( Ох )координат наз. осью абсцисс, другая - осью ординат (Оу). Оси координат делят плоскость на четыре равные области - четверти, или квадранты.
Прямоугольными декартовыми координатами точки Мназ. упорядоченная пара чисел (х, у), первое из к-рых (абсцисса) равно величине ортогональнсой проекции направленного отрезка ОМ на ось абсцисс, второе (ордината) - величине ортогональной проекции направленного отрезка ОМ на ось ординат.
Д. п. с. к. в трехмерном пространстве задается аналогично случаю плоскости: осью абсцисс, осью ординат, осью аппликат и началом координат О. Плоскости, проходящие через оси координат, наз. координатными плоскостями. Они делят пространство на 8 областей - октантов.
Иногда пользуются косоугольной (общей) декартовой системой координат, к-рая отличается от Д. п. с. к. тем, что углы между осями координат не обязательно прямые.
Векторным
произведением вектора
на
вектор
в
пространстве
называется
вектор
,
удовлетворяющий следующим требованиям:
длина вектора равна произведению длин векторов и на синус угла
между ними:
;
вектор ортогонален каждому из векторов и ;
вектор направлен так, что тройка векторов
является правой;
в случае пространства
требуется ассоциативность тройки векторов .
Обозначение: