
- •Понятие об интегральной функциональной микроэлектронике.
- •Монтаж кристаллов и плат.
- •1. Методы изготовления имс.
- •2. Получение слоев оксида и нитрида кремния.
- •1. Виды интегральных микросхем.
- •2. Ионное легирование п/п.
- •1.Полупроводниковые имс.
- •2. Металлизация полупроводниковых структур.
- •1.Микросборки.
- •2. Изготовление биполярных имс с комбинированной изоляцией
- •1.Контроль бис
- •2.Подложки полупроводниковых имс
- •1.Контроль гибридных имс.
- •2. Легирование полупроводников диффузией
- •Условия возникновения p-n-перехода.
- •Факторы, определяющие скорость процесса диффузии
- •Диффузия из постоянного внешнего источника (одностадийный процесс).
- •Диффузия из конечного поверхностного источника (вторая стадия двухстадийного процесса).
- •1. Подложки пленочных и гибридных имс
- •2. Технологические процессы изготовления бис и сбис.
- •1 Этап.
- •1. Нанесение тонких пленок в вакууме
- •2. Особенности, этапы и классификация процессов изготовления полупроводниковых имс
- •. Ионное легирование полупроводников.
- •Нанесение толстых пленок.
- •1)Особенности процесса ионного легирования
- •2) Нанесение толстых пленок.
- •20Билет
- •Способы сухой очистки пластин и подложек.
- •Химическое и электрохимическое нанесение пленок.
- •Сборка и защита гибридных имс и бис
- •Назначение и виды контроля
- •Сборка и защита полупроводниковых имс и бис
- •Контроль полупроводниковых имс
- •Способы защиты имс
- •1)Эпитаксиальное наращивание полупроводниковых слоев.
- •Монтаж кристаллов и плат.
- •25 Билет
- •Методы и этапы сборки.
- •Разделение пластин и подложек.
- •1) Особенности процесса сборки
2. Легирование полупроводников диффузией
Легирование методом термической диффузии примесей
Условия возникновения p-n-перехода.
В подавляющем большинстве случаев легирующая примесь вводится в монокристаллический кремний с целью изменения типа проводимости и образования p-n-перехода на определённой глубине. Изменение типа проводимости имеет место в случае, если максимальная концентрация введённой примеси превышает концентрацию исходную (Nисх). Образование p-n-перехода происходит на глубине Хn, где концентрация введённой примеси оказывается равной исходной.
Рис.
6. Принцип образования p-n-перехода.
При термической диффузии (рис. 6) максимальная концентрация примеси всегда на поверхности (N0) и монотонно убывает с глубиной.
Факторы, определяющие скорость процесса диффузии
Как известно, диффузия атомов или молекул в любой среде (газовой, жидкой, твердой) описывается следующим уравнением (1-е уравнение диффузии):
|
(1) |
где J - плотность потока частиц, см–2×с–1; Х – глубина проникновения частиц в направлении Х, см, (в рассматриваемом случае – по нормали к поверхности кристалла); N - концентрация частиц (атомов примеси), см–3 .
Таким образом, множитель ¶N/¶X представляет собой градиент концентрации примеси [см–4] в направлении Х, а коэффициент пропорциональности D [см2×с–1] – коэффициент диффузии. С повышением температуры процесса коэффициент диффузии быстро (экспоненциально) возрастает, т.к. возрастает энергия атомов легирующей примеси. В плотной структуре оксидной маски (SiO2) коэффициент диффузии существенно меньше, за счёт чего и обеспечивается избирательность легирования.
Диффузия из постоянного внешнего источника (одностадийный процесс).
В этом случае внешний (вне рабочей камеры) источник постоянно поставляет к поверхности пластин-заготовок примесь в газообразном состоянии, причём её расход отрегулирован так, что на поверхности пластины поддерживается постоянная концентрация N0 , хотя примесь при этом поступает вглубь кристалла. Процесс выполняют до тех пор, пока p-n-переход не окажется на заданной глубине.
Диффузия из конечного поверхностного источника (вторая стадия двухстадийного процесса).
В этом случае поверхность кристалла содержит определённое количество примеси на единицу площади, и процесс сводится к перераспределению (разгонке) её по глубине до тех пор, пока p-n-переход не углубится на заданную величину Xn. Таким образом, количество примеси, введённое предварительно в поверхностный слой, или доза легирования Q [см–2] сохраняется постоянной до конца процесса разгонки.
Билет 15
1. Подложки пленочных и гибридных имс
Пленочные:
Подложки плёночных микросхем, которые изготавливают из сапфира, ситаллов, керамик и прочего, всегда обладают прямоугольной конфигурацией и толщиной порядка от 0,2 мм до 1 мм. Подложки не должны вступать в химические реакции с материалами плёнок, обязаны обладать низкой степенью шероховатости поверхности, должны обладать высоким электрическим сопротивлением. Нанесение плёнок на подложку осуществляют через трафарет, называемый маской. Выполнение плёночных конденсаторов и особенно катушек индуктивности по очень весомым причинам не рекомендуют, однако в отдельных случаях без них всё же не обойтись.
Толстоплёночные контактные площадки выполняют, например, возжжением паст, содержащих алюминий, медь, тантал или в редких случаях золото. Чтобы улучить адгезию металлических покрытий к подложке, на ней сначала формируют промежуточный слой никеля, который обладает лучшей адгезией, чем другие металлы, а уже на этот слой наносят требуемый материал.
Плёночные резисторы, которые выполняют нанесением на подложку паст, содержащих никель, керметы, тантал, хром и т.д. со связующим веществом, имеют прямоугольную конфигурацию. С целью повышения сопротивления резистора его выполняют в виде соединённых друг с другом многочисленных элементарных одинаковых участков Г-образной или П-образной конфигурации, которые повторяют до тех пор, пока не будет получено необходимое сопротивление, что показано на рис. 9.1.
Обычно сопротивление такого плёночного резистора может составлять от 0,05 кОм до 50 кОм, а получить много большее или много меньшее сопротивление затруднительно.
Плёночные конденсаторы имеют многослойную структуру и в общем случае образованы двумя электропроводящими плёнками, между которыми выполняют слой диэлектрической плёнки. Обкладки плёночных конденсаторов изготовляют из электропроводящих плёнок, содержащих алюминий, тантал, серебро, медь и подобные материалы. Диэлектрическую плёнку обычно получают из различных оксидов: окиси тантала, трёхсернистой сурьмы, двуокиси кремния, моноокиси германия и пр. Ёмкость плёночных конденсаторов обычно составляет от 10 пФ до 20 нФ.
Плёночные катушки индуктивности имеют спиралевидную форму, что изображено на рис. 9.2, и образованы нанесением токопроводящих плёнок на поверхность подложки.
Индуктивность таких плёночных катушек не превышает 10 мкГн.
Изготовление активных компонентов наслоением плёнок вызывает большие трудности.
Гибридные:
Обычно на диэлектрической подложке ГИС создают сугубо пассивные детали, например, постоянные резисторы. Активные дискретные компоненты, разработанные для использования в ГИС, не имеют корпусов, а для защиты от пагубного воздействия окружающей среды их покрывают капельками лака или компаунда. Транспортировку активных компонентов осуществляют в специальных контейнерах. Контактные площадки, созданные на подложке ГИС, необходимы для обеспечения взаимных соединений плёночных деталей, а также для подключений тонких проводников, которые осуществляют электрические контакты между тонкоплёночными и внешними дискретными компонентами. Активные компоненты, которые подключают к контактным площадкам, выполняют с жёсткими или с гибкими выводами. Детали с жёсткими выводами наиболее удобны для автоматической сборки ГИС, однако разработка таких изделий связана с определёнными трудностями. Конденсаторы с ёмкостью более 20 нФ и катушки индуктивности обычно не выполняют на подложке ГИС, а задействуют как навесные компоненты. В больших ГИС – сокращённо БГИС – в качестве внешних деталей применяют бескорпусные полупроводниковые микросхемы. Соединение компонентов ГИС с выводами корпуса осуществляют пайкой, микросваркой и т.п.