Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
3_Транценднтные уравнения.DOC
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
5.47 Mб
Скачать

3. Решение трансцендентных уравнений

3. Решение трансцендентных уравнений

3.1. Постановка задачи

Во многих инженерных и научных задачах возникает необходимость решения уравнений вида:

F(x, a1, a2, ..., ak) = 0

(3.1)

где F - заданная непрерывная функция;

x – неизвестная величина, подлежащая определению;

a1, a2, ..., ak – известные параметры функции F.

Решить уравнение (3.1) - это значит найти такое значение (или такие значения) неизвестной x, при которых уравнение (3.1) превращается в тождество. Эти значения x называются корнями уравнения (3.1).

Только для простейших уравнений удается найти решение в аналитическом виде, т.е. записать формулу

x = f(a1, a2, ..., ak) ,

выражающую искомую величину x явным образом через параметры a1, a2, ..., ak, например, для уравнения вида

ax2 + bx + c = 0

его корни выражаются формулой:

.

В большинстве же случаев аналитическую запись корней уравнения найти очень сло­ж­но или в принципе невозможно (такие уравнения называются трансцендентными), и по­это­му приходится решать уравнение численным способом.

Существует несколько различных методов численного решения трансцендентных уравнений, но все они предполагают выполнение двух этапов: первый из них называется "отделение корней", второй - "уточнение корней". Ниже рассматривается один из спосо­бов отделения корней и четыре метода уточнения корней - метод дихотомий, метод хорд, метод касательных и метод простых итераций.

3.2. Отделение корней

На данном этапе определяются те интервалы области изменения переменной x, в каждом из которых расположен один и только один корень уравнения (3.1). По сути дела на этом этапе определяются грубые приближения значений x с погрешностью, определяемой длиной каждого найденного интервала. Пол­ностью автоматизировать процесс отде­ле­­ния корней, пожалуй, невозможно, так как в нем обязательно присутствует элемент су­бъ­ективного, интуитивного подхода к решению задачи. Иногда, например, интервал, в котором расположен корень, удается получить из физической сущности решаемой задачи.

При выполнении этого этапа с использованием ЭВМ обычно проводится "табу­лирование" функции F(x, a1, a2, ..., ak), т.е. построение таблицы ее значений при различных значе­ниях x, следующих друг за другом с некоторым шагом h:

x

F(x)

x1

F1

x2

F2

. . .

. . .

xn

Fn

где xi+1 = xi + h ; Fi = F(xi); i = 1,2,...,n-1.

Например, таблица значений функции x2 - 12 lnx + 6 sin x на промежутке [1,10] c шагом h = 1 имеет вид:

x

F(x)

1.0

6.05

2.0

0.72

3.0

- 3.99

4.0

- 6.01

5.0

- 1.03

6.0

11.75

7.0

28.42

8.0

43.74

9.0

55.79

10.0

67.72

В качестве границ искомых интервалов выбираются такие соседние значения x, в которых соответствующие значения F(x) имеют разные знаки, так как изменение знака функции на некотором интервале означает в силу ее непрерывности, что где-то в пределах этого интервала график функции пересекает ось абсцисс, т.е. уравнение F(x) = 0 име­ет корень. В частности, на основании данных из приведенной выше таблицы можно сде­лать вывод, что уравнение x2 - 12 lnx + 6 sin x = 0 на промежутке [1,10] имеет по край­ней мере два корня: в интервале (2,3) и в интервале (5,6).

Рис.3.1. Алгоритм отделения корней

табулированием функции

При выполнении этого этапа нужно проявлять определенную осторожность: во-пеpвых, оди­наковые знаки функции F на концах интервала (xi, xi+1) не означают, что на этом интервале нет корней - их может быть, например, два; во-втоpых, при разных знаках на концах интервала здесь может оказаться не один корень, а три или, например, пять.

В приводимой на рис.3.1 схеме алгоритма отделения корней использованы следующие обозначения:

xН, xК - соответственно левая и правая границы промежутка табулирования функции F(x);

x - текущая точка табулирования;

;

В0, В1 - знаки функции F(x) соответственно в пре­дыдущей и текущей точках табулирования.

В соответствии с данной блок-схемой производится не просто табулирование функции, а, кроме то­­го, анализ знака функции в каждой новой точке и вывод сообщения при его изменении.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]