
- •1. Определение положения точки в пространстве.
- •Вектор перемещения.
- •2. Вектор скорости.
- •Вектор ускорения.
- •3. Кинематика твердого тела.
- •Число степеней свободы .
- •4.Вращательное движение тел .
- •5.Движение отдельных точек вращающегося твердого тела.
- •6.Плоское движение твердого тела.
- •8. Статическое и динамическое проявление сил.
- •9. Уравнение моментов относительно произвольного центра.
- •10. Основной закон динамики.
- •1 1. Движение тел в поле центральных сил.
- •Считая массу планеты постоянной, можно далее записать:
- •12. Основной закон динамики системы материальных точек.
- •13. Уравнения моментов для системы материальных точек относительно произвольного центра, произвольной оси.
- •14. Основной закон динамики тела переменной массы (уравнение Мещерского) для тела с убывающей массой.
- •16. Относительность механического движения.
- •17. Постулаты Эйнштейна.
- •18. "Замедление" хода времени.
- •19 . Сравнение поперечных размеров тел.
- •20. Преобразования Лоренца.
- •21. Релятивистская масса, релятивистский импульс.
- •22. Силы инерции.
- •23. Силы трения. Сухое трение.
- •24.Вязкое трение
- •25. Упругие силы.
- •Продольное сжатие и растяжение. Закон Гука.
- •26. Деформация сдвига.
- •27. Закон всемирного тяготения.
- •28.Потенциальная энергия гравитационного взаимодействия, гравитационный потенциал.
- •29. Работа силы, работа суммы сил.
- •Работа упругих сил.
- •30.Работа и кинетическая энергия.
- •31. Момент инерции твёрдого тела.
- •Свободные оси вращения
- •33 Гироскопы.
- •34. Давление покоящейся жидкости.
- •35. Уравнение гидростатики эйлера
- •36.Уравнение поверхности уровня
- •37. Закон паскаля
- •38.Сообщающиеся сосуды заполнены однородной жидкостью
- •Сообщающиеся сосуды заполненные неоднородной жидкостью
- •39. Закон архимеда Тело погружено в жидкость (рис. 73).
- •На его поверхность со стороны жидкости действуют силы давления, выделим в теле объем малого сечения, ось которого вертикальна. На верхнюю и нижнюю грани этого объема действуют силы давления:
- •40. Механика движущихся жидкостей.
- •Расход жидкости
- •Уравнение неразрывности струи жидкости
- •41. Уравнение бернулли
- •Формула торичелли
- •42. Ламинарнре и турбулентное течение жидкости. Число рейнольдса.
- •43. Колебательное движение
- •44. Собственные колебания
- •45. Затухающие колебания
- •46. Вынужденные колебания
- •47. Математический маятник
- •48.Геометрическое представление колебаний.
- •49. Сложение одинаково направленных колебаний. Частоты складываемых колебаний одинаковы.
- •50. Частоты складываемых колебаний различны, одинаковы амплитуды и начальные фазы
- •51. Сложение взаимноперпендикулярных колебаний.
- •52. Гармонический анализ периодических движений.
- •55. Упругие волны.
- •56. Уравнение плоской волны, движущейся в определённом координатном направлении.
- •57.Продольные волны в твёрдом теле. Волновое уравнение.
- •58.Интерференция воли.
17. Постулаты Эйнштейна.
В основе специальной теории относительности, прежде всего, лежит факт постоянства скорости света в различных системах отсчета, что противоречит классическому закону сложения скоростей. Кроме того, нет никаких оснований считать, что механические опьггы позволят отличить одну инициальную систему отсчета от другой. Это позволило Эйнштейну сформулировать исходные постулаты специальной теории относительности.
Постулат о постоянстве скорости света: скорость света в вакууме одинакова во всех инерциальных системах отсчета и не зависит от движения источника и приемника света.
Постулат относительности (общефизический принцип относительности): Никакими физическими опытами нельзя отличить одну инерциальную систему отсчета от другой. Наряду с этими постулатами Эйнштейн ввел принцип синхронизации часов, имеющий такое же значение в теории относительности, как и сформулированные выше постулаты.
Для того, чтобы одинаковые по устройству часы А и В (рис.31)
ш
ли
одинаково, необходимо их синхронизировать.
Пусть в момент времени , отсчитанный
по часам А, в том месте, где они
находятся, осуществляется световая
вспышка. Сигнал от нее достигает часов
В, мгновенно отражается и поступает
к часам А в момент времени ,
отсчитанный по ним. Часы А и В
считаются синхронизированными, если в
момент отражения сигнала в т. В
показания часов равны:
"Радиолокационный" метод (метод коэффициента "k ").
Движение тел можно графически представлять диаграммами x=x(t). В случае скоростей, сравнимых со скоростью света, масштаб х и t выбирается таким, что траектория светового сигнала ("световая линия") делит координатный угол пополам. Если же тело движется со скоростью, меньшей скорости света, угол наклона его траектории к оси t меньше 45°.
Предположим, что две инерциальные системы отсчета А и В находятся в относительном движении. Систему А условно считаем неподвижной. В исходный момент времени системы полностью совпадали. В этот момент осуществляется синхронизация подвижных и неподвижных часов и на них устанавливаются нулевые показания. Далее система В удаляется от А со скоростью v<c (рис.32).
З
атем
в системе А производится вторая
вспышка в момент времени t,
измеренный по часам А. Сигнал от нее
догоняет систему В в момент времени
, измеренный по часам В в подвижной
системе, а показания неподвижных часов
А для этого события равны . Сигнал
мгновенно отражается и приходит в
систему А в момент времени ,
отсчитанный по часам А.
П редположим, что показания подвижных часов в момент отражения сигнала в k раз отличаются от показаний неподвижных часов t в момент посылки сигнала:
= kt
С
истемы
равноправны, поэтому с момента отражения
неподвижной можно считать систему В,
а систему А - подвижной. Тогда
показания часов А в момент приема
сигнала равны:
С момента синхронизации до отражения сигнала система В и световой сигнал, посланный в момент времени t (по часам А), проходят одинаковый путь:
т
.е
откуда получаем значение коэффициента k:
С
ледовательно,
показания подвижных часов в момент
приема сигнала всегда больше показаний
неподвижных часов в момент посылки
сигнала: