
- •Определение микропроцессора. Общие сведения о микропроцессорных системах. Классификация микропроцессоров.
- •Risc и cisc-архитектуры процессоров. Преимущества и недостатки. Примеры современных процессоров с risc и cisc-архитектурой.
- •Укрупненная структурная схема элементарной микропроцессорной системы. Назначение основных функциональных узлов.
- •Функции процессора. Системная магистраль, назначение шин. Схема подключения процессора, основные выводы микросхемы процессора.
- •Внутренняя структура микропроцессора. Схема управления выборкой команд, алу, регистры процессора, схема управления прерываниями, схема управления прямым доступом к памяти, логика управления.
- •Характеристики систем памяти микропроцессорных систем, методы доступа к памяти.
- •Многоуровневая иерархическая архитектура памяти: описание каждого уровня. Основная память.
- •Увеличение разрядности микросхем памяти. Структура памяти на основе блочной схемы.
- •Расслоение памяти. Блочная память с чередованием адресов по циклической схеме. Блочно-циклическая схема расслоения памяти.
- •Режимы доступа к памяти: последовательный, конвейерный, регистровый; страничный; пакетный, удвоенной скорости.
- •Статическая и динамическая оперативная память, классификация. Основные функциональные характеристики.
- •Однопортовые и многопортовые запоминающие устройства. Структура двухпортовых оперативных запоминающих устройств.
- •Постоянная память. Память программ для микроконтроллеров. Микросхемы постоянной памяти.
- •Ассоциативная память. Структура ассоциативного запоминающего устройства. Классификация.
- •Организация кэш-памяти. Структура микропроцессорной системы с основной и кэш-памятью. Параметры кэш-памяти.
- •Способы отображения основной памяти на кэш-память: прямое, полностью ассоциативное, частично-ассоциативное отображение. Структурные схемы, сравнительная характеристика.
- •17 Микроконтроллеры, классификация, структурные схемы. Принстонская и Гарвардская архитектуры. Преимущества и недостатки.
- •Типы памяти микроконтроллеров. Память программ, память данных, внешняя память, регистры мк, стек.
- •Система питания микроконтроллеров, понятие собственной мощности. Система тактирования и синхронизации микроконтроллеров, виды, преимущества и недостатки.
- •Отличительные признаки современных 8-разрядных микроконтроллеров. Модульная организация мк. Структура процессорного ядра мк и изменяемого функционального блока.
- •Организация связи мк с внешней средой и временем. Порты ввода-вывода. Типовая схема двунаправленного порта ввода-вывода.
- •Микроконтроллер 8051, его место в современном производстве микроконтроллеров. Базовая архитектура процессора. Назначение основных регистров. Регистры специальных функций. Регистр флагов.
- •Микроконтроллер 8051: организация памяти программ и памяти данных. Способы адресации. Устройство управления и синхронизации.
- •Организация портов ввода-вывода микроконтроллера 8051. Устройство портов. Альтернативные функции портов.
- •Таймеры-счетчики микроконтроллеров семейства 8051: регистр режима работы, регистр управления-статуса. Режимы работы таймеров-счетчиков.
- •. Организация прерываний микроконтроллера 8051. Регистры прерываний.
- •Система команд микроконтроллера 8051. Способы адресации.
- •Средства и системы разработки микроконтроллеров.
- •29. Системы ввода/вывода (свв). Способы подключения свв к процессору, их достоинства и недостатки.
- •30. Организация адресного пространства системы ввода/вывода. Совмещенное и выделенное адресное пространство, достоинства и недостатки. Адресное пространство системы ввода/вывода
- •31. Категории и структура внешних устройств. Внешние устройства
- •32. Модули ввода-вывода. Функции модуля ввода-вывода. Модули ввода/вывода Функции модуля
- •33. Структура модуля ввода-вывода, описание регистров (привести схему).
- •34. Методы управления вводом-выводом: программно управляемый ввод/вывод. Программно управляемый ввод/вывод
- •35. Методы управления вводом-выводом: ввод/вывод по прерываниям. Ввод/вывод по прерываниям
- •36. Методы управления вводом-выводом: прямой доступ к памяти. Прямой доступ к памяти
17 Микроконтроллеры, классификация, структурные схемы. Принстонская и Гарвардская архитектуры. Преимущества и недостатки.
Микроконтроллер – это самостоятельная компьютерная система, которая содержит процессор, память, вспомогательные схемы и устройства ввода-вывода данных, размещенные в общем корпусе.
Основные типы:
встраиваемые 8-разрядные МК;
16 и 32-разрядные МК;
цифровые сигнальные процессоры (DSP).
Рисунок 6.1 – Общая структура микроконтроллера
Основное преимущество Пристонской архитектуры – упрощение устройства МПС, так как реализуется обращение только к одной общей памяти. Кроме того, использование единой области памяти позволяло оперативно перераспределять ресурсы между областями программ и данных, что существенно повышало гибкость МПС с точки зрения разработчика программного обеспечения. Размещение стека в общей памяти облегчало доступ к его содержимому. Неслучайно поэтому фон-неймановская архитектура стала основной архитектурой универсальных компьютеров, включая персональные компьютеры.
Основной особенностью гарвардской архитектуры является использование раздельных адресных пространств для хранения команд и данных. Кроме того, гарвардская архитектура обеспечивает потенциально более высокую скорость выполнения программы по сравнению с фон-неймановской за счет возможности реализации параллельных операций.
Типы памяти микроконтроллеров. Память программ, память данных, внешняя память, регистры мк, стек.
В МК используется три основных вида памяти. Память программ представляет собой постоянную память (ПЗУ), предназначенную для хранения программного кода (команд) и констант. Ее содержимое в ходе выполнения программы не изменяется. Память данных предназначена для хранения переменных в процессе выполнения программы и представляет собой ОЗУ. Регистры МК — этот вид памяти включает в себя внутренние регистры процессора и регистры, которые служат для управления периферийными устройствами (регистры специальных функций).
Память программ
Основным свойством памяти программ является ее энергонезависимость, то есть возможность хранения программы при отсутствии питания. С точки зрения пользователей МК следует различать следующие типы энергонезависимой памяти программ: (ROM,EPROM,PROM, EEPROM, Flash-ROM)
Память данных
Память данных МК выполняется, как правило, на основе статического ОЗУ. Термин "статическое" означает, что содержимое ячеек ОЗУ сохраняется при снижении тактовой частоты МК до сколь угодно малых значений (с целью снижения энергопотребления).
Регистры МК
Как и все МПС, МК имеют набор регистров, которые используются для управления его ресурсами. В число этих регистров входят обычно регистры процессора (аккумулятор, регистры состояния, индексные регистры), регистры управления (регистры управления прерываниями, таймером), регистры, обеспечивающие ввод/вывод данных (регистры данных портов, регистры управления параллельным, последовательным или аналоговым вводом/выводом). Обращение к этим регистрам может производиться по-разному.
Стек МК
В микроконтроллерах ОЗУ данных используется также для организации вызова подпрограмм и обработки прерываний. При этих операциях содержимое программного счетчика и основных регистров (аккумулятор, регистр состояния и другие) сохраняется и затем восстанавливается при возврате к основной программе.
Внешняя память
Несмотря на существующую тенденцию по переходу к закрытой архитектуре МК, в некоторых случаях возникает необходимость подключения дополнительной внешней памяти (как памяти программ, так и данных). Если МК содержит специальные аппаратные средства для подключения внешней памяти, то эта операция производится штатным способом (как для МП).Второй, более универсальный, способ заключается в том, чтобы использовать порты ввода/вывода для подключения внешней памяти и реализовать обращение к памяти программными средствами. Такой способ позволяет задействовать простые устройства ввода/вывода без реализации сложных шинных интерфейсов, однако приводит к снижению быстродействия системы при обращении к внешней памяти.