
- •Определение микропроцессора. Общие сведения о микропроцессорных системах. Классификация микропроцессоров.
- •Risc и cisc-архитектуры процессоров. Преимущества и недостатки. Примеры современных процессоров с risc и cisc-архитектурой.
- •Укрупненная структурная схема элементарной микропроцессорной системы. Назначение основных функциональных узлов.
- •Функции процессора. Системная магистраль, назначение шин. Схема подключения процессора, основные выводы микросхемы процессора.
- •Внутренняя структура микропроцессора. Схема управления выборкой команд, алу, регистры процессора, схема управления прерываниями, схема управления прямым доступом к памяти, логика управления.
- •Характеристики систем памяти микропроцессорных систем, методы доступа к памяти.
- •Многоуровневая иерархическая архитектура памяти: описание каждого уровня. Основная память.
- •Увеличение разрядности микросхем памяти. Структура памяти на основе блочной схемы.
- •Расслоение памяти. Блочная память с чередованием адресов по циклической схеме. Блочно-циклическая схема расслоения памяти.
- •Режимы доступа к памяти: последовательный, конвейерный, регистровый; страничный; пакетный, удвоенной скорости.
- •Статическая и динамическая оперативная память, классификация. Основные функциональные характеристики.
- •Однопортовые и многопортовые запоминающие устройства. Структура двухпортовых оперативных запоминающих устройств.
- •Постоянная память. Память программ для микроконтроллеров. Микросхемы постоянной памяти.
- •Ассоциативная память. Структура ассоциативного запоминающего устройства. Классификация.
- •Организация кэш-памяти. Структура микропроцессорной системы с основной и кэш-памятью. Параметры кэш-памяти.
- •Способы отображения основной памяти на кэш-память: прямое, полностью ассоциативное, частично-ассоциативное отображение. Структурные схемы, сравнительная характеристика.
- •17 Микроконтроллеры, классификация, структурные схемы. Принстонская и Гарвардская архитектуры. Преимущества и недостатки.
- •Типы памяти микроконтроллеров. Память программ, память данных, внешняя память, регистры мк, стек.
- •Система питания микроконтроллеров, понятие собственной мощности. Система тактирования и синхронизации микроконтроллеров, виды, преимущества и недостатки.
- •Отличительные признаки современных 8-разрядных микроконтроллеров. Модульная организация мк. Структура процессорного ядра мк и изменяемого функционального блока.
- •Организация связи мк с внешней средой и временем. Порты ввода-вывода. Типовая схема двунаправленного порта ввода-вывода.
- •Микроконтроллер 8051, его место в современном производстве микроконтроллеров. Базовая архитектура процессора. Назначение основных регистров. Регистры специальных функций. Регистр флагов.
- •Микроконтроллер 8051: организация памяти программ и памяти данных. Способы адресации. Устройство управления и синхронизации.
- •Организация портов ввода-вывода микроконтроллера 8051. Устройство портов. Альтернативные функции портов.
- •Таймеры-счетчики микроконтроллеров семейства 8051: регистр режима работы, регистр управления-статуса. Режимы работы таймеров-счетчиков.
- •. Организация прерываний микроконтроллера 8051. Регистры прерываний.
- •Система команд микроконтроллера 8051. Способы адресации.
- •Средства и системы разработки микроконтроллеров.
- •29. Системы ввода/вывода (свв). Способы подключения свв к процессору, их достоинства и недостатки.
- •30. Организация адресного пространства системы ввода/вывода. Совмещенное и выделенное адресное пространство, достоинства и недостатки. Адресное пространство системы ввода/вывода
- •31. Категории и структура внешних устройств. Внешние устройства
- •32. Модули ввода-вывода. Функции модуля ввода-вывода. Модули ввода/вывода Функции модуля
- •33. Структура модуля ввода-вывода, описание регистров (привести схему).
- •34. Методы управления вводом-выводом: программно управляемый ввод/вывод. Программно управляемый ввод/вывод
- •35. Методы управления вводом-выводом: ввод/вывод по прерываниям. Ввод/вывод по прерываниям
- •36. Методы управления вводом-выводом: прямой доступ к памяти. Прямой доступ к памяти
Режимы доступа к памяти: последовательный, конвейерный, регистровый; страничный; пакетный, удвоенной скорости.
Последовательный режим
При использовании последовательного режима адрес и управляющие сигналы подаются на микросхему до поступления синхроимпульса. В момент поступления синхроимпульса вся входная информация запоминается во внутренних регистрах – по его переднему фронту, и начинается цикл чтения. Через некоторое время, но в пределах того же цикла, данные появляются на внешней шине, причем этот момент определяется только временем поступления синхронизирующего импульса и скоростью внутренних цепей микросхемы.
Конвейерный режим
Конвейерный режим – это такой метод доступа к данным, при котором можно продолжать операцию чтения по предыдущему адресу в процессе запроса по следующему. В отличие от последовательного режима, где цикл чтения начинается только по окончании предыдущего, в конвейерном режиме процесс разбивается на два этапа. . Пока данные из предыдущего цикла чтения передаются на внешнюю шину, происходит запрос на следующую операцию чтения. Таким образом два цикла чтения перекрываются во времени.
Регистровый режим
Регистровый режим используется относительно редко и отличается наличием регистра на выходе микросхемы. Адрес и управляющие сигналы выдаются на шину до поступления синхронизирующего импульса. С поступлением положительного фронта синхроимпульса адрес записывается во внутренний регистр микросхемы, и начинается цикл чтения.По быстродействию регистровый режим идентичен последовательному.
Страничный режим
В основе идеи лежит тот факт, что при доступе к ячейкам со смежными адресами причем к таким, где все запоминающие элементы расположены в одной строке матрицы, доступ ко второй и последующим ячейкам можно производить существенно быстрее. действительно, если адрес строки при очередном обращении остался прежним, то все временные затраты, связанные с повторным занесением адреса строки в регистр ИМС, дешифрацией и т.д. можно исключить. Для доступа к очередной ячейке достаточно подавать на ИМС лишь адрес нового столбца, сопровождая его сигналом CAS. Обращение к первой ячейке в последовательности происходит стандартным образом. Рассмотренный режим называется страничным.
Режим быстрого страничного доступа
Режим быстрого страничного доступа представляет собой модификацию стандартного страничного режима. Основное отличие заключается в способе занесения новой информации в регистр адреса столбца. Полный адрес (строки и столбца) передается только при первом обращении к строке.
Пакетный режим
Пакетный режим – режим, при котором на запрос по конкретному адресу память возвращает пакет данных, хранящихся не только по этому адресу, но и по нескольким последующим адресам.
Режим удвоенной скорости
Важным этапом в дальнейшем развитии технологии микросхем памяти стал режим DDR (Double Data Rate) – удвоенная скорость передачи данных. Сущность метода заключается в передаче данных по обоим фронтам импульса синхронизации, т.е. дважды за период, и пропускная способность увеличивается в два раза.