Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
eLTEKh_shpory.docx
Скачиваний:
2
Добавлен:
01.04.2025
Размер:
6.29 Mб
Скачать

57. Системы счисления. Основные понятия и определения. Перевод чисел из одной системы счисления в другую

Система счисле́ния — символический метод записи чисел, представление чисел с помощью письменных знаков.Система счисления:даёт представления множества чисел (целых и/или вещественных);даёт каждому числу уникальное представление (или, по крайней мере, стандартное представление);отражает алгебраическую и арифметическую структуру чисел.Системы счисления подразделяются на позиционныенепозиционные и смешанные.В позиционных системах счисления один и тот же числовой знак (цифра) в записи числа имеет различные значения в зависимости от того места (разряда), где он расположен. Изобретение позиционной нумерации, основанной на поместном значении цифр, приписывается шумерам и вавилонянам; развита была такая нумерация индусами и имела неоценимые последствия в истории человеческой цивилизации. К числу таких систем относится современная десятичная система счисления, возникновение которой связано со счётом на пальцах. В средневековой Европе она появилась через итальянских купцов, в свою очередь заимствовавших её у мусульман.Смешанная система счисления является обобщением  -ричной системы счисления и также зачастую относится к позиционным системам счисления. Основанием смешанной системы счисления является возрастающая последовательность чисел  , и каждое число   в ней представляется как линейная комбинация: где на коэффициенты  , называемые как и прежде цифрами, накладываются некоторые ограничения.В факториальной системе счисления основаниями являются последовательность факториалов  , и каждое натуральное число   представляется в виде: , где  .Факториальная система счисления используется при декодировании перестановок списками инверсий: имея номер перестановки, можно воспроизвести её саму следующим образом: число, на единицу меньшее номера (нумерация начинается с нуля) записывается в факториальной системе счисления, при этом коэффициент при числе i! будет обозначать число инверсий для элемента i+1 в том множестве, в котором производятся перестановки (число элементов меньших i+1, но стоящих правее его в искомой перестановке)В непозиционных системах счисления величина, которую обозначает цифра, не зависит от положения в числе. При этом система может накладывать ограничения на положение цифр, например, чтобы они были расположены в порядке убывания.Биномиальная система счисленияПредставление, использующее биномиальные коэффициенты где  .

58. Двоичная арифметика

Числа которыми мы привыкли пользоваться называются десятичными и арифметика которой мы пользуемся также называется десятичной. Это потому, что каждое число можно составить из набора цифр содержащего 10 символов - цифр - "0123456789".Так шло развитие математики, что именно этот набор стал главным, но десятичная арифметика не единственная. Если мы возьмём только пять цифр, то на их основе можно построить пятиричную арифметику, из семи цифр - семиричную. В областях знаний связанных с компьютерной техникой часто используют арифметику в которой числа составляются из шестнадцати цифр, соответственно эта арифметика называется шестнадцатиричной. Чтобы понять, что такое число в не десятичной арифметике сначала выясним, что такое число в десятичной арифметике.Возьмём, к примеру, число 246. Эта запись означает, что в числе две сотни, четыре десятка и шесть единиц. Следовательно, можно записать следующее равенство:246 = 200 + 40 + 6 = 2 * 102 + 4 * 101 + 6 * 100Здесь знаками равенства отделены три способа записи одного и того же числа. Наиболее интересна нам сейчас третья форма записи: 2 * 102 + 4 * 101 + 6 * 100 . Она устроена следующим образом:В нашем числе три цифры. Старшая цифра "2" имеет номер 3. Так вот она умножается на 10 во второй степени. Следующая цифра "4" имеет порядковый номер 2 и умножается на 10 в первой. Уже видно, что цифры умножаются на десять в степени на единицу меньше порядкового номера цифры. Уяснив сказанное, мы можем записать общую формулу представления десятичного числа. Пусть дано число, в котором N цифр. Будем обозначать i-ю цифру через ai. Тогда число можно записать в следующем виде: anan-1….a2a1. Это первая форма, а третья форма записи будет выглядеть так:anan-1….a2a1 = an * 10n-1 + an-1 * 10n-2 + …. + a2 * 101 + a1 * 10где ai это символ из набора "0123456789"

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]