
- •Типы организации клеток
- •Происхождение эукариотической клетки
- •Функции биологических мембран следующие:
- •Уотсона—крика модель
- •Свойства гена
- •Генетический код
- •Свойства
- •Транскрипция (переписывание)
- •Трансляция и транспорт аминокислот
- •(Учебник первая часть, страница 102. Я просто не знаю как это объяснить понятным русским языком. Прошу меня простить.) Здесь представленно краткое объяснение.
- •Профаза
- •Постнатальный период.
- •Второй критический период — имплантация.
- •Сперматогенез
- •Овогенез
- •19. Мейоз. Фазы мейоза, их характеристика и значение. Рекомбинация наследственного материала, ее медицинское и эволюционное значение.
- •Мейоз состоит из 2 последовательных делений с короткой интерфазой между ними.
- •20. Морфология половых клеток.
- •21. Эволюционные преобразования яйцеклеток хордовых. Типы яйцеклеток в зависимости от количества желтка и его распределения в цитоплазме. Овоплазматическая сегрегация.
- •22. Оплодотворение, его фазы, биологическая сущность.
- •В процессе оплодотворения различают несколько фаз:
- •23. Эмбриональное развитие организма. Дробление. Типы дробления, Гаструляция, способы гаструляции.
- •Эмбриональный период
- •Способы гаструляции
- •25. Провизорные органы зародышей позвоночных, их функции. Группы животных: анамнии и амниоты.
- •26. Плацента, её роль. Типы плаценты. Плацента человека.
- •27. Постэмбриональный период онтогенеза, его периодизация у человека. Критические периоды постэмбрионального периода.
- •Постэмбриональное развитие и его периоды.
Свойства гена
дискретность — несмешиваемость генов;
стабильность — способность сохранять структуру;
лабильность — способность многократно мутировать;
множественный аллелизм — многие гены существуют в популяции во множестве молекулярных форм;
аллельность — в генотипе диплоидных организмов только две формы гена;
специфичность — каждый ген кодирует свой признак;
плейотропия — множественный эффект гена;
экспрессивность — степень выраженности гена в признаке;
пенетрантность — частота проявления гена в фенотипе;
амплификация — увеличение количества копий гена.
Генетимческий код — свойственный всем живым организмам способ кодирования аминокислотной последовательности белков при помощи последовательности нуклеотидов.
В ДНК используется четыре азотистых основания — аденин (А), гуанин (G), цитозин (С), тимин (T), которые в русскоязычной литературе обозначаются буквами А, Г, Ц и Т. Эти буквы составляют алфавит генетического кода. В РНК используются те же нуклеотиды, за исключением тимина, который заменён похожим нуклеотидом — урацилом, который обозначается буквой U (У в русскоязычной литературе). В молекулах ДНК и РНК нуклеотиды выстраиваются в цепочки и, таким образом, получаются последовательности генетических букв.
Генетический код
Белки практически всех живых организмов построены из аминокислот всего 20 видов. Эти аминокислоты называют каноническими. Каждый белок представляет собой цепочку или несколько цепочек аминокислот, соединённых в строго определённой последовательности. Эта последовательность определяет строение белка, а следовательно все его биологические свойства.
Реализация генетической информации в живых клетках (то есть синтез белка, кодируемого геном) осуществляется при помощи двух матричных процессов: транскрипции (то есть синтеза мРНК на матрице ДНК) и трансляции генетического кода в аминокислотную последовательность (синтез полипептидной цепи на мРНК). Для кодирования 20 аминокислот, а также сигнала «стоп», означающего конец белковой последовательности, достаточно трёх последовательных нуклеотидов. Набор из трёх нуклеотидов называется триплетом. Принятые сокращения, соответствующие аминокислотам и кодонам, изображены на рисунке.
Свойства
Триплетность — значащей единицей кода является сочетание трёх нуклеотидов (триплет, или кодон).
Непрерывность — между триплетами нет знаков препинания, то есть информация считывается непрерывно.
Неперекрываемость — один и тот же нуклеотид не может входить одновременно в состав двух или более триплетов (не соблюдается для некоторых перекрывающихся генов вирусов, митохондрий и бактерий, которые кодируют несколько белков, считывающихся со сдвигом рамки).
Однозначность (специфичность) — определённый кодон соответствует только одной аминокислоте (однако, кодон UGA у Euplotes crassus кодирует две аминокислоты — цистеин и селеноцистеин).
Вырожденность (избыточность) — одной и той же аминокислоте может соответствовать несколько кодонов.
Универсальность — генетический код работает одинаково в организмах разного уровня сложности — от вирусов до человека (на этом основаны методы генной инженерии; есть ряд исключений, показанный в таблице раздела «Вариации стандартного генетического кода» ниже).
Помехоустойчивость — мутации замен нуклеотидов, не приводящие к смене класса кодируемой аминокислоты, называют консервативными; мутации замен нуклеотидов, приводящие к смене класса кодируемой аминокислоты, называют радикальными.
№9. Реализация генетической информации. Основные этапы: транскрипция и посттранскрипционные процессы, трансляция и посттрансляционные процессы.
Генетимческая информамция — информация о строении белков, закодированная с помощью последовательности нуклеотидов — генетического кода — в генах (особых функциональных участках молекул ДНК или РНК).
Генетическая информация определяет морфологическое строение, рост, развитие, обмен веществ, психический склад, предрасположенность к заболеваниям и генетические пороки организма. Реализация генетической информации происходит в процессе синтеза белковых молекул с помощью трех типов РНК: информационной (иРНК) (ее также называют матричной РНК, мРНК), транспортной (тРНК) и рибосомальной (рРНК). При этом генетическая информация копируется с матрицы ДНК на мРНК в ходе транскрипции, а затем мРНК используется как матрица для синтеза белков в ходе трансляции.
Процесс передачи информации может идти:
в направлении ДНК → РНК → белок
в направлении РНК → ДНК при обратной транскрипции.
Передача генетической информации в направлении от белка к нуклеиновым кислотам, по-видимому, невозможна, в частности, из-за свойства вырожденности генетического кода.
Реализамция генетимческой информамции — процесс, происходящий внутри каждой живой клетки, во время которого генетическая информация, записанная в ДНК, воплощается в биологически активных веществах — РНК и белках. Переход генетической информации от ДНК к РНК и от РНК к белку является универсальным для всех без исключения клеточных организмов. Представление об этом информационном потоке называется центральной догмой молекулярной биологии.