
- •Типы организации клеток
- •Происхождение эукариотической клетки
- •Функции биологических мембран следующие:
- •Уотсона—крика модель
- •Свойства гена
- •Генетический код
- •Свойства
- •Транскрипция (переписывание)
- •Трансляция и транспорт аминокислот
- •(Учебник первая часть, страница 102. Я просто не знаю как это объяснить понятным русским языком. Прошу меня простить.) Здесь представленно краткое объяснение.
- •Профаза
- •Постнатальный период.
- •Второй критический период — имплантация.
- •Сперматогенез
- •Овогенез
- •19. Мейоз. Фазы мейоза, их характеристика и значение. Рекомбинация наследственного материала, ее медицинское и эволюционное значение.
- •Мейоз состоит из 2 последовательных делений с короткой интерфазой между ними.
- •20. Морфология половых клеток.
- •21. Эволюционные преобразования яйцеклеток хордовых. Типы яйцеклеток в зависимости от количества желтка и его распределения в цитоплазме. Овоплазматическая сегрегация.
- •22. Оплодотворение, его фазы, биологическая сущность.
- •В процессе оплодотворения различают несколько фаз:
- •23. Эмбриональное развитие организма. Дробление. Типы дробления, Гаструляция, способы гаструляции.
- •Эмбриональный период
- •Способы гаструляции
- •25. Провизорные органы зародышей позвоночных, их функции. Группы животных: анамнии и амниоты.
- •26. Плацента, её роль. Типы плаценты. Плацента человека.
- •27. Постэмбриональный период онтогенеза, его периодизация у человека. Критические периоды постэмбрионального периода.
- •Постэмбриональное развитие и его периоды.
№1. Биологические системы, их фундаментальные свойства. Эволюционно обусловленные уровни организации жизни. Элементарные единицы, элементарные явления на различных уровнях организации жизни.
Биологическая система - это живая структура, существующая в определенной для неё среде обитания, обладающая способностью обмена веществ и энергии, а также защитой обмена и копирования информации, которая определяет её функции и возможности.
Биологические системы характеризуются двумя основными свойствами:
1. Обмен веществ. Любая биологическая система является открытой системой. Это означает, что она не может существовать без обмена с внешней средой химическим веществом, энергией и информацией.
2. Самовоспроизведение с изменением. Любая биологическая система способна воспроизводить себе подобную.
Кроме указанных свойств выделяются разнообразные признаки биологических систем:
1. Особенности химического состава. В состав биологических систем входят вещества, которые в неживой природе не обнаруживаются: нуклеиновые кислоты, белки, углеводы, липиды, разнообразные низкомолекулярные органические вещества.
2. Биологические системы характеризуются такой высокой степенью упорядоченности, такой строгой системой соподчинения (иерархичностью), которые никогда не встречаются в неживой природе.
3. Биологические системы представляют собой продукт реализации генетической программы строения, развития и функционирования. Эта программа реализуется в процессе развития биологической системы в определенных условиях внутренней и внешней среды. Например, фенотип формируется на основе генотипа в определенных условиях развития организма.
4. Биологические системы являются открытыми проточными системами. Они постоянно поглощают высокоорганизованную энергию (в виде химической или световой энергии) и выделяют низкоорганизованную (в виде тепла). Разность в уровне организации энергии используется для повышения уровня организации биологических структур.
5. Биологические системы – это саморегулирующиеся системы, способные поддерживать свою структуру в условиях изменяющейся внешней среды. В основе саморегуляции биологических систем лежит множество обратных связей между составляющими их элементами. Сохранение постоянства внутренней среды организма или иной биологической системы иначе называется гомеостаз. Существует три принципа гомеостаза: избыточность структур, полифункциональность структур, делокализация структур.
6. Рост и развитие. Рост проявляется как накопление количественных изменений (увеличение объема, массы, числа клеток). Развитие проявляется как переход количественных изменений в качественные (появление новых органов и новых функций).
7. Целостность и дискретность. Любая биологическая система является целостной системой, реагирующей на воздействия как единое целое. В то же время, биологические системы одного уровня дискретны, то есть более или менее отграничены друг от друга (термин «дискретность» означает «прерывистость, обособленность»).
В ходе эволюции живой природы сформировалась иерархия живых систем. На всех уровнях проявляются основные атрибуты жизни. При этом жизненные процессы более высокого уровня обеспечиваются (определяются) структурами низшего уровня.
Молекулярный уровень, являющийся начальным (наиболее глубинным) уровнем организации живого, представлен биомолекулами, в первую очередь молекулами биополимеров – нуклеиновых кислот, белков, полисахаридов. На этом уровне осуществляются важнейшие процессы жизнедеятельности: кодирование и передача наследственной информации, пластический и энергетический обмен, дыхание и др. Из биомолекул формируются надмолекулярные структуры.
Субклеточный уровень является переходным между молекулярным и клеточным уровнями. Процессы жизнедеятельности, протекающие на этом уровне, обеспечивают рост и специализацию клетки, самовосстановление и саморазрушение ее органоидов и др.
Клеточный уровень представлен клетками как самостоятельных организмов (бактерии, простейшие), так и клетками многоклеточных организмов. Обладая способностью к матричному синтезу и размножению, питанию, дыханию, росту, развитию и т.п., клетка является основной формой организации живой природы, структурно-функциональной единицей жизни.
Тканевой уровень возник в ходе эволюции в связи со становлением многоклеточности как следствие дифференциации клеток. Его дискретная единица – ткань объединяет клетки и их производные, характеризующиеся однородностью происхождения, сходством функции, расположения, а в ряде случаев и строения. На тканевом уровне происходит специализация новообразующихся клеток, образование внеклеточных структур, становление, функционирование и регенерация тканей.
Органный уровень характеризует сложные многотканевые живые системы. Дискретная единица уровня – орган представляет собой часть организма, имеющую определенную форму и выполняющую специфические функции. Взаимосвязанные в первую очередь общей функцией или биологической ролью в организме органы формируют системы органов.
Организменный уровень представлен одноклеточными и многоклеточными организмами. На этом уровне происходит становление, рост и развитие организма как единого целого, его приспособление к факторам внешней среды.
Популяционный уровень представлен минимальными группами особей, вовлеченными в эволюционный процесс, – популяциями. Дискретная единица этого уровня – популяция является элементарной единицей эволюции. Объединение отдельных особей в популяции обеспечивает их приспособление, выживание, репродуктивный успех и успех в эволюции в целом.
Видовой уровень представлен надпопуляционными объединениями особей – биологическими видами. Как и популяция, вид – реально существующая в природе группа особей, завершающий этап микроэволюционного процесса.
Биоценотический уровень представлен сообществами взаимозависимых организмов разных видов – биоценозами. В ходе эволюции сформировались биогеоценозы (экосистемы), включающие, кроме взаимозависимых организмов, абиотические факторы окружающей среды. Биосферный уровень – высший уровень организации живых систем, на котором все биоценотические круговороты вещества и энергии объединяются в единый биосферный (глобальный) круговорот вещества и энергии.
№2. Клеточная теория Т. Шванна и М. Шлейдена, ее основные положения. Современное состояние клеточной теории.
Клеточная теория — одно из общепризнанных биологических обобщений, утверждающих единство принципа строения и развития мира растений, животных и остальных живых организмов с клеточным строением, в котором клетка рассматривается в качестве общего структурного элемента живых организмов.
Клеточная теория — основополагающая для биологии теория, сформулированная в середине XIX века, предоставившая базу для понимания закономерностей живого мира и для развития эволюционного учения. Маттиас Шлейден и Теодор Шванн сформулировали клеточную теорию, основываясь на множестве исследований о клетке (1838). Рудольф Вирхов позднее (1858) дополнил её важнейшим положением (всякая клетка происходит от другой клетки).
Шлейден и Шванн, обобщив имеющиеся знания о клетке, доказали, что клетка является основной единицей любого организма. Клетки животных, растений и бактерии имеют схожее строение. Позднее эти заключения стали основой для доказательства единства организмов. Т. Шванн и М. Шлейден ввели в науку основополагающее представление о клетке: вне клеток нет жизни. Клеточная теория дополнялась и редактировалась с каждым разом.
Положения клеточной теории Шлейдена-Шванна
Все животные и растения состоят из клеток.
Растут и развиваются растения и животные путём возникновения новых клеток.
Клетка является самой маленькой единицей живого, а целый организм — это совокупность клеток.
Основные положения современной клеточной теории
Клетка - элементарная единица живого, вне клетки жизни нет.
Клетка - единая система, она включает множество закономерно связанных между собой элементов, представляющих целостное образование, состоящее из сопряжённых функциональных единиц - органоидов.
Клетки всех организмов гомологичны.
Клетка происходит только путём деления материнской клетки, после удвоения её генетического материала.
Многоклеточный организм представляет собой сложную систему из множества клеток, объединённых и интегрированных в системы тканей и органов, связанных друг с другом.
Клетки многоклеточных организмов тотипотентны.
Современная клеточная теория исходит из того, что клеточная структура является главнейшей формой существования жизни, присущей всем живым организмам, кроме вирусов. Совершенствование клеточной структуры явилось главным направлением эволюционного развития как у растений, так и у животных, и клеточное строение прочно удержалось у большинства современных организмов.
Вместе с тем должны быть подвергнуты переоценке догматические и методологически неправильные положения клеточной теории:
Клеточная структура является главной, но не единственной формой существования жизни. Неклеточными формами жизни можно считать вирусы. Правда, признаки живого (обмен веществ, способность к размножению и т. п.) они проявляют только внутри клеток, вне клеток вирус является сложным химическим веществом. По мнению большинства учёных, в своём происхождении вирусы связаны с клеткой, являются частью её генетического материала, «одичавшими» генами.
Догматическая клеточная теория игнорировала специфичность неклеточных структур в организме или даже признавала их, как это делал Вирхов, неживыми. В действительности, в организме кроме клеток есть многоядерные надклеточные структуры (синцитии, симпласты) и безъядерное межклеточное вещество, обладающее способностью к метаболизму и потому живое. Установить специфичность их жизнепроявлений и значение для организма является задачей современной цитологии. В то же время и многоядерные структуры, и внеклеточное вещество появляются только из клеток. Синцитии и симпласты многоклеточных — продукт слияния исходных клеток, а внеклеточное вещество — продукт их секреции, то есть образуется оно в результате метаболизма клеток.
Проблема части и целого разрешалась ортодоксальной клеточной теорией метафизически: всё внимание переносилось на части организма — клетки или «элементарные организмы».
Целостность организма есть результат естественных, материальных взаимосвязей, вполне доступных исследованию и раскрытию. Клетки многоклеточного организма не являются индивидуумами, способными существовать самостоятельно (так называемые культуры клеток вне организма представляют собой искусственно создаваемые биологические системы). К самостоятельному существованию способны, как правило, лишь те клетки многоклеточных, которые дают начало новым особям (гаметы, зиготы или споры) и могут рассматриваться как отдельные организмы. Клетка не может быть оторвана от окружающей среды (как, впрочем, и любые живые системы). Сосредоточение всего внимания на отдельных клетках неизбежно приводит к унификации и механистическому пониманию организма как суммы частей.
Очищенная от механицизма и дополненная новыми данными клеточная теория остается одним из важнейших биологических обобщений.
№3 Типы клеточной организации. Строение про- и эукариотических клеток. Гипотезы происхождения эукариотических клеток (симбиотическая, инвагинационная).
Типы организации клеток
Существуют два типа организации клеток: прокариотические и эукариотические клетки. Принципиальным отличием между ними является наличие оформленного ядра.
Прокариотические клетки (доядерные) не содержат оформленного ядра. Основными компонентами прокариотических клеток являются оболочка и цитоплазма. Структурой, отвечающей за передачу наследственной информации, является генофор (нуклеоид), расположенный непосредственно в цитоплазме. По химической природе генофор – это молекула ДНК, не связанная с белками и имеющая форму кольца.
На поверхности плазматической мембраны бактерий располагается клеточная стенка, состоящая из муреина (полисахаридных цепей, соединенных друг с другом короткими цепями пептидов). У некоторых клеток клеточная стенка покрыта защитным слизистым слоем или капсулой. Клеточная стенка сохраняет форму клеток, обеспечивает их жесткость и антигенные свойства.
Мембрана прокариот имеет сложнодифференцированные впячивания – мезосомы, которые по своим функциям напоминают митохондрии эукариотических клеток.
Цитоплазма прокариотических клеток лишена органоидов, за исключением рибосом. В ней находятся включения в виде гранул гликогена, липидов и т.д. Кроме того, в ней присутствуют плазмиды (внекольцевые фрагменты ДНК, определяющие ряд признаков и свойств данной клетки, гены которых контролируют незначительную часть наследственных признаков бактериальной клетки). Они способны к самостоятельной репликации и стабильно наследуются потомством. Широко используются в генной инженерии.
У зеленых и пурпурных бактерий (автотрофы) на впячиваниях плазматической мембраны находятся фотосинтезирующие пигменты. Следовательно, клетки сине-зеленых водорослей (цианеи) сходны с бактериальными, но, кроме вышеперечисленных компонентов, они содержат хлорофилл.
Эукариотические клетки (ядерные) имеют оформленное ядро, которое включает структуры, ответственные за хранение, воспроизведение и передачу наследственной информации – хромосомы. Они расположены в ядре клетки и отграничены от цитоплазмы ядерной оболочкой. По химической природе хромосомы – это дезоксирибонуклеопротеидные структуры (ДНП) – комплексы ДНК и белков. В не делящейся клетке хромосомы деспирализованы и имеют вид нитей хроматина. Во время деления они спирализуются и приобретают палочковидную форму. К надцарству эукариот относятся царства растений, грибов и животных.
Происхождение эукариотической клетки
Ископаемые останки клеток эукариотического типа обнаружены в породах, возраст которых не превышает 1,0–1,4 млрд. лет. Более позднее возникновение, а также сходство в общих чертах их основных биохимических процессов (самоудвоение ДНК, синтез белка на рибосомах) заставляют думать о том, что эукариотические клетки произошли от предка, имевшего прокариотическое строение.
Наиболее популярна в настоящее время симбиотическая гипотеза происхождения эукариотических клеток, согласно которой основой, или клеткой-хозяином, в эволюции клетки эукариотического типа послужил анаэробный прокариот, способный лишь к амебоидному движению. Переход к аэробному дыханию связан с наличием в клетке митохондрии, которые произошли путем изменений симбионтов – аэробных бактерий, проникших в клетку-хозяина и сосуществовавших с ней.
Согласно инвагинационной гипотезе, предковой формой эукариотической клетки был аэробный прокариот. Внутри такой клетки-хозяина находилось одновременно несколько геномов, первоначально прикреплявшихся к клеточной оболочке. Органеллы, имеющие ДНК, а также ядро, возникли путем впячивания и отшнуровывания участков оболочки с последующей функциональной специализацией в ядро, митохондрий, хлоропласты. В процессе дальнейшей эволюции произошло усложнение ядерного генома, появилась система цитоплазматических мембран.
Инвагинационная гипотеза хорошо объясняет наличие в оболочках ядра, митохондрий, хлоропластов, двух мембран. Однако она не может ответить на вопрос, почему биосинтез белка в хлоропластах и митохондриях в деталях соответствует таковому в современных прокариотических клетках, но отличается от биосинтеза белка в цитоплазме эукариотической клетки.
№4. Клеточная оболочка, ее структуры. Молекулярная организация и функции биологической мембраны. Виды транспорта веществ.
Клеточная оболочка окружает собственно клетку со всех сторон и служит связующим звеном между ней и соседними клетками, обеспечивая, таким образом, единство и целостность всего растительного организма. В жестких оболочках растительных клеток образуются каналы, в которых располагаются тончайшие тяжи цитоплазмы – плазмодесмы. Благодаря этому, осуществляются межклеточные взаимодействия. Иными словами, у растений клеточные оболочки призваны обеспечивать те функции, которые у животных выполняют скелет, кожа и система кровообращения (т.е. опорную, защитную и транспортную.) Не удивительно поэтому, что в ходе эволюции у растений возникли весьма разнообразные по структуре и химическому составу типы клеточных стенок. Собственно говоря, растительные клетки во многом различают и классифицируют именно по форме и природе клеточных стенок.
Оболочка, как правило, бесцветна и прозрачна. Она легко пропускает солнечный свет. Оболочки соседних клеток как бы сцементированы межклеточными веществами, образующими так называемую срединную пластинку. Вследствие этого соседние клетки оказываются отделёнными друг от друга стенкой, образованной двумя оболочками и срединной пластинкой. Это и даёт основание называть оболочку также клеточной стенкой.
Плазматическая мембрана, или плазмалемма, — наиболее постоянная, основная, универсальная для всех клеток мембрана. Она представляет собой тончайшую (около 10 нм) пленку, покрывающую всю клетку. Плазмалемма состоит из молекул белков и фосфолипидов . Молекулы фосфолипидов расположены в два ряда — гидрофобными концами внутрь, гидрофильными головками к внутренней и внешней водной среде. В отдельных местах бислой (двойной слой) фосфолипидов насквозь пронизан белковыми молекулами (интегральные белки). Внутри таких белковых молекул имеются каналы — поры, через которые проходят водорастворимые вещества. Другие белковые молекулы пронизывают бислой липидов наполовину с одной или с другой стороны (полуинтегральные белки). На поверхности мембран эукариотических клеток имеются периферические белки. Молекулы липидов и белков удерживаются благодаря гидрофильно-гидрофобным взаимодействиям.
Важнейшим свойством мембраны является также избирательная проницаемость. Это значит, что молекулы и ионы проходят через нее с различной скоростью, и чем больше размер молекул, тем меньше скорость прохождения их через мембрану. Это свойство определяет плазматическую мембрану как осмотический барьер. Максимальной проникающей способностью обладает вода и растворенные в ней газы; значительно медленнее проходят сквозь мембрану ионы. Диффузия воды через мембрану называется осмосом.