
- •Определители второго и третьего порядка и их вычисление. Определение определителя любого порядка. Алгебраические дополнения. Перечислить свойства определителя.
- •Определение вектора. Равенство векторов. Сумма векторов и ее свойства. Произведения векторов и числа и его свойства.
- •Проекция на ось суммы векторов, произведения вектора и числа и их свойства.
- •Разложение вектора по базису. Координатное представление.
- •Координаты вектора и точки в декартовой системе координат.
- •Длина вектора. Расстояние между двумя точками. Орт вектора. Координаты орта. Косинусы направления.
- •Линейные операции над векторами в координатной форме. Условие коллинеарности двух векторов. Деление отрезка в данном отношении и, в частности, пополам.
- •Скалярное произведение двух векторов. Его определение через взаимные прямоугольные проекции. Неравенство Коши.
- •Свойства скалярного произведения векторов. Скалярное произведение в координатной форме в декартовом базисе.
- •Модуль вектора. Косинус угла между векторами. Условие перпендикулярности двух векторов.
- •Площадь параллелограмма, построенного из двух векторов в плоскости.
- •Ориентация системы координат. Правая и левая тройки векторов. Определение векторного произведения. Свойства векторного произведения.
- •Векторное произведение в координатной форме. Площадь параллелограмма, построенного на двух векторах в пространстве.
- •Уравнение прямой на плоскости и плоскости в пространстве, проходящей через данную точку перпендикулярно данному вектору. Геометрический смысл коэффициентов при неизвестных.
- •17. Уравнение прямой в пространстве. В каноническом и параметрическом виде. Уравнение прямой, проходящей через 2 данные точки.
- •18. Переход к каноническому виду уравнения прямой в пространстве от задания её в виде пересечения двух плоскостей.
- •19. Уравнение плоскости, проходящей через данную точку, параллельную двум данным векторам. Уравнение плоскости, проходящей через 3 данные точки.
- •20. Комплексные числа и арифметические операции над ними
- •21. Сопряженные комплексные числа. Корни многочлена с вещественными коэффициентами.
- •22. Тригонометрическая и показательная форма к.Ч. Умножение и деление к.Ч. В тригон. И показат. Форме
- •23. Формула Муавра. Извлечения корня из комплексного числа.
- •24) Матрица. Размер матрицы. Квадратная матрица и её порядок. Равенство матриц. Вектор-строка и вектор-столбец. Линейные операции над матрицами.
- •25) Умножение матриц, его ассоциативность, дистрибутивность относительно сложения и некомутативность. Единичная матрица. Её строение и единственность (для квадратных матриц данного порядка).
- •26) Обратная матрица и её построение.
- •27) Матричная запись слау и методы решения:
- •29) Ранг Матрицы. Теорема Кронекера – Капелле.
- •35) Приведение квадратичной формы к каноническому виду.
- •36)Закон Инерции Квадратичных форм
- •37) Симметричный оператор. Инвариантность ортогонального дополнения собственного вектора.
- •41)Приведение квадратичной формы к каноническому виду изометрическим линейным преорбазованием.
- •42)Напомнить индуктивное определение определителя. Разложение по первой строке. Перестановка двух строк.
- •43)Разложение определителя по любой строке.
- •44)Транспонирование определителя.
- •45)Определитель произведения двух квадратных матриц.
- •46)Группы. "Экономное" опеределение. Единственность и перестановочность левой единицы и левого обратного.
- •47)Подгруппы. Разложение по подгруппе. Теорема Лагранжа.
- •48)Нормальные подгруппы. Фактор-группы. Циклические группы. Гомоморфизмы групп.
27) Матричная запись слау и методы решения:
Матричная запись СЛАУ заключается в том, чтобы записать в матрицу коэффициенты при неизвестных переменных.
Методы решения:
Пусть задана СЛАУ
,
Тогда в матричной форме
Метод обратной матрицы:
AX=B AA-1X=BA-1 X=BA-1
Метод Крамера:
Система линейных уравнений:
Если в системе det A≠0 и существует A-1, то система имеет единственное решение.
Определители:
Заметим
что ∆i
определитель
получается из определителя ∆=
с
заменой i-го
столбца на столбец свободных членов.
Решение:
Метод Гаусса:
Записать расширенную матрицу системы.
Привести к ступенчатому виду с помощью элементарных преобразований(Прямой ход Гаусса)
Провести обратный ход Гаусса (если нужно).
Пояснение: Возможны случаи когда решения очевидны после проведения прямого хода Гаусса. Но если же это не так, то из последнего ненулевого уравнения выражаем базисную переменную через небазисные и подставляем в предыдущие уравнения. Повторяя эту процедуру для всех базисных переменных, получаем фундаментальное решение.
Метод Жордана-Гаусса:
Выбирают первый слева столбец матрицы, в котором есть хоть одно отличное от нуля значение.
Если самое верхнее число в этом столбце есть ноль, то меняют всю первую строку матрицы с другой строкой матрицы, где в этой колонке нет нуля.
Все элементы первой строки делят на верхний элемент выбранного столбца.
Из оставшихся строк вычитают первую строку, умноженную на первый элемент соответствующей строки, с целью получить первым элементом каждой строки (кроме первой) ноль.
Далее проводят такую же процедуру с матрицей, получающейся из исходной матрицы после вычёркивания первой строки и первого столбца.
После повторения этой процедуры
раз получают ступенчатую матрицу
Вычитают из предпоследней строки последнюю строку, умноженную на соответствующий коэффициент, с тем, чтобы в предпоследней строке осталась только 1 на главной диагонали.
Повторяют предыдущий шаг для последующих строк. В итоге получают единичную матрицу и решение на месте свободного вектора (с ним необходимо проводить все те же преобразования).
Чтобы получить обратную матрицу, нужно применить все операции в том же порядке к единичной матрице.
29) Ранг Матрицы. Теорема Кронекера – Капелле.
Рангом системы
строк (столбцов) матрицы
с
строк
и
столбцов
называется максимальное число линейно
независимых строк
(столбцов). Несколько строк (столбцов)
называются линейно независимыми, если
ни одна из них не выражается линейно
через другие. Ранг системы строк всегда
равен рангу системы столбцов, и это
число называется рангом матрицы.
Ранг матрицы — наивысший из порядков миноров этой матрицы, отличных от нуля.
Теорема Кронекера – Капелле:
Система совместна (имеет хотя бы одно решение) тогда и только тогда, когда ранг матрицы системы равен рангу расширенной матрицы.
Док-во:
1) Если решение существует, то столбец свободных членов есть линейная комбинация столбцов матрицы А, а значит добавление этого столбца в матрицу, т.е. переход А->А* не изменяют ранга.
2) Если RgA = RgA*, то это означает, что они имеют один и тот же базисный минор (минор ранга n базисный, если все миноры n+1 ранга равны 0 либо не существуют)
Столбец свободных членов – линейная комбинация столбцов базисного минора, те верна запись, приведенная выше.
33) Изменение матрицы линейного преобразования при замене базиса.
Преобразование матрицы линейного оператора при изменении базиса.
Как уже отмечалось, в пространстве Rn существует множество различных базисов.
Пусть
и
— два базиса в Rn.
Обозначим
и
координаты векторов X и
Y из L и
матрицу оператора A
соответственно в базисах
и
,
а
– матрицу перехода от базиса
к базису
,
т.е.
Тогда
откуда имеем формулы преобразования матрицы линейного оператора при изменении базиса: