
- •Вопросы
- •Биполярные транзисторы. Основные характеристики: входные, выходные, проходные. Электрические и экспоненциальные параметры.
- •Каскад с оэ: схема включения, значения параметров Rвх, Rвых, Ku, Ki, φ. Достоинства, недостатки и применение.
- •Каскад с ок: схема включения, значения параметров Rвх, Rвых, Ku, Ki, φ. Достоинства, недостатки и применение (эмитерный повторитель).
- •Каскад с об: схема включения, значения параметров Rвх, Rвых, Ku, Ki, φ. Достоинства, недостатки и применение.
- •Статические характеристики биполярных транзисторов, h- параметры, схемы замещения транзисторов.
- •Транзисторный источник тока. Транзисторный источник тока с заземленной нагрузкой. Недостатки.
- •Модель Эмберса – Молла.
- •Схемы задания общей точки. Недостатки. Применение.
- •Токовые зеркала (эффект Эрли). Недостатки. Применение.
- •Отражатели тока.
- •Режимы работы транзисторов: активный (усилительный), инверсный, насыщения.
- •Классы усиления: a, b, ab, c, d. Достоинства и недостатки. Применение.
- •Усилители мощности. Однотактные и двухтактные усилители. Схемы включения.
- •Составные транзисторы: схемы Дарлингтона и Шиклаи. Применение.
- •Следящая связь (пос). Схема. Применение.
- •Эффект Миллера.
- •Полевые транзисторы (мдп (моп) – транзисторы). По способу создания канала (с p-n переходом, встроенным и индуцированным каналом). Входные и выходные характеристики.
- •Достоинства полевого транзистора по сравнению с биполярным транзистором. Недостатки. Достоинства полевого транзистора с p-n переходом. Недостатки.
- •Схемы включения полевых транзисторов: общий исток, общий сток, общий затвор
- •Бтиз (igbt) – биполярный транзистор с изолированным затвором. Достоинства по сравнению с моп.
- •Обратные связи (ос): отрицательная обратная связь (оос), положительная обратная связь (пос). Применение. Коэффициент ос. Ос по способам подачи сигнала и по способу снятия сигнала.
- •Ос последовательная по напряжению и по току. Схемы. Основные параметры.
- •Ос параллельная по напряжению и по току. Схемы. Основные параметры.
- •Усилители. Классификация и основные характеристики.
- •Амплитудно-частотные и фозо-частотные характеристики.
- •Усилители постоянного тока (упт). Упт с непосредственной связью между каскадами. Схема. Достоинства и недостатки. Применение.
- •Метод мдм (модуляция-демодуляция). Достоинства и недостатки.
- •Дифференциальные усилители (ду). Схема включения. Ду в режиме покоя, в режиме усиления противофазного сигнала, в режиме усиления синфазного сигнала. Способ улучшения свойств усилителя (схема).
- •Способы компенсации начального напряжения смещения. Схема.
- •Ду с динамической нагрузкой. Схема.
- •Операционные усилители (оу). Графическое изображение. Упрощенная схема оу.
- •Классификация оу по типам входных каскадов: бпт, пт, супер - бпт, с гальванической изоляцией входа от выхода, варикап.
- •Динамическое питание оу. Недостаток
- •Параметры оу (входные, выходные и динамические). Характеристики.
- •Инвертирующие усилители (схемы). Параметры. Достоинства и недостатки.
- •Преобразователь тока в напряжение. Неинвертирующий усилитель (схема). Достоинства и недостатки.
- •Преобразователь "напряжение - ток".
- •Преобразователь "ток-напряжение".
- •Сумматоры и вычетатели. Неинвертирующий сумматор (схема). Недостаток. Инвертирующий сумматор (схема). Достоинства и недостатки. Применение. Вычетатель. Инвертирующий и неинвертирующий сумматоры
- •В ычитатель.
- •Пассивный сумматор.
- •Активный неинвертирующий сумматор.
- •Интегратор и дифференциатор. Схемы. Применение. Интегратор
- •Дифференциатор
- •Компараторы (устройства сравнения). Схемы. Недостатки.
- •Триггер Шмидта (компаратор с гистерезисом). Схемы. Недостаток.
- •Генераторы синусоидальных колебаний. Условия для работы схемы в режиме генерации.
- •Генераторы гармонических сигналов. Схема. Достоинства и недостатки.
- •Кварцевый генератор. Схема. Достоинства и недостатки.
- •Мультивибраторы (генераторы прямоугольных колебаний). Схема.
- •Источники тока на оу.
- •Усилители мощности на оу.
- •Инвертирующий оу с большим Rвх и ku.
- •Повторитель – инвертор.
- •Усилитель фототока с высокой крутизной.
- •Прецизионные выпрямители.
- •Компенсационные источники питания. Параметрические. Достоинства и недостатки.
- •Последовательный компенсационный стабилизатор напряжения на транзисторе. Схема и принцип работы.
- •Понижающий преобразователь. Схема. Принцип работы.
- •Повышающий преобразователь. Схема. Принцип работы.
- •Повышающе – понижающий преобразователь (комбинированный неинвертирующий). Схема. Принцип работы.
- •Повышающе – понижающий инвертирующий преобразователь. Схема. Принцип работы.
- •Функциональная схема ключевого преобразователя напряжения (принципиальная схема). Принцип работы.
- •Резонансные преобразователи.
- •Источники опорного напряжения. Задание рабочего тока стабилитрона, источника тока на оу. Стабилитронные интегральные микросхемы. Источники опорного напряжения
- •Регулируемый стабилизатор
Режимы работы транзисторов: активный (усилительный), инверсный, насыщения.
Основные режимы работы биполярных транзисторов:
Активный (усилительный) режим: эмиттерный p-n включён в прямом направлении, приоткрыт, коллекторный в обратном, закрыт. Характеризуется большим KI. Основной режим работы.
Инверсный режим: эмиттерный переход смещён в обратном направлении, коллекторный – в прямом. Недостатки: малый Ki и Uбэmax. Достоинства: высокое быстродействие, малое напряжение насыщения. Используется в быстродействующих переключающих схемах
KIинв<< 1/10* KIусил (KIинв< 1/10* KIусил)
UПmax< 7 В
Эмиттерный переход сильнолегирован, коллекторный – слабо (с целью уменьшения UКmax).
Режим насыщения: оба p-n перехода транзистора включают в прямом направлении, открыты.
Режим отсечки: оба p-n перехода транзистора включают в обратном направлении, закрыты.
Чередование режимов 3 и 4 позволяет в ключевых каскадах (в т.ч. в усилителях класса D) увеличить КПД до 90-98%.
Классы усиления: a, b, ab, c, d. Достоинства и недостатки. Применение.
К
ласс
А
В
этом режиме рабочая точка находится на
середине линейного
участка проходной характеристики. В
этом режиме обеспечиваются минимальные
нелинейные искажения, но он имеет низкий
КПД (25 – 30%) и высокие потери мощности в
режиме отсутствия сигнала. Используются
в предварительных и промежуточных
каскадах усилителей, а также в усилителях
мощности сверхвысокого
качества.
Класс В
В этом режиме рабочая точка находится в начале проходной характеристики Uбэ = 0. Достоинства: достаточно высокий КПД (до 75% при усилении синусоидального сигнала), отсутствие потерь мощности в режиме покоя. Недостатки: высокие нелинейные искажения. Применение: в усилителях мощности невысокого качества и высокой экономичности при наличии глубокой ООС(которая уменьшает искажения) и в ОУ.
К
ласс
АВ
В
этом режиме рабочая точка находится в
начале линейного участка проходной
характеристики. Имеет высокий КПД
(60-65%), невысокие потери мощности
в режиме покоя и относительно невысокие
линейные
искажения(<3%). Недостатки:
необходимость введения дополнительных
цепей для температурной стабилизации
в положении рабочей точки из-за
саморазогрева транзистора вследствие
наличия в нём тепловой положительной
обратной связи.
Используется
в усилителях мощности среднего и
высокого
качества.
Класс С
В этом режиме транзистор заперт напряжением смещения на базе и находится в режиме отсечки, т.е. рабочая точка находится левее нуля. Транзистор надёжно закрыт обратным смещением. КПД более высокий чем в режиме В(≈80%), но очень высокие нелинейные искажения. Используется в устройствах, где существенны даже незначительные увеличения КПД, а нелинейные искажения не играют роли, также в генераторах и усилителях, где выделение основной гармоники осуществляется специальными фильтрами, в мощных радиопередатчиках.
К
ласс
D
Режим работы класса D – это ключевой режим работы транзистора. Достоинство: очень высокий КПД (90-98%). Недостатки: проблемы получения синусоидального сигнала, сложность такого устройства, наличие дополнительных помех и искожений. Используется: в импульсных преобразователях и стабилезаторах напряжения, в усилителях мощности гармонических сигналов (крайне редко, только при условии использования шин).