
- •Вопросы
- •Биполярные транзисторы. Основные характеристики: входные, выходные, проходные. Электрические и экспоненциальные параметры.
- •Каскад с оэ: схема включения, значения параметров Rвх, Rвых, Ku, Ki, φ. Достоинства, недостатки и применение.
- •Каскад с ок: схема включения, значения параметров Rвх, Rвых, Ku, Ki, φ. Достоинства, недостатки и применение (эмитерный повторитель).
- •Каскад с об: схема включения, значения параметров Rвх, Rвых, Ku, Ki, φ. Достоинства, недостатки и применение.
- •Статические характеристики биполярных транзисторов, h- параметры, схемы замещения транзисторов.
- •Транзисторный источник тока. Транзисторный источник тока с заземленной нагрузкой. Недостатки.
- •Модель Эмберса – Молла.
- •Схемы задания общей точки. Недостатки. Применение.
- •Токовые зеркала (эффект Эрли). Недостатки. Применение.
- •Отражатели тока.
- •Режимы работы транзисторов: активный (усилительный), инверсный, насыщения.
- •Классы усиления: a, b, ab, c, d. Достоинства и недостатки. Применение.
- •Усилители мощности. Однотактные и двухтактные усилители. Схемы включения.
- •Составные транзисторы: схемы Дарлингтона и Шиклаи. Применение.
- •Следящая связь (пос). Схема. Применение.
- •Эффект Миллера.
- •Полевые транзисторы (мдп (моп) – транзисторы). По способу создания канала (с p-n переходом, встроенным и индуцированным каналом). Входные и выходные характеристики.
- •Достоинства полевого транзистора по сравнению с биполярным транзистором. Недостатки. Достоинства полевого транзистора с p-n переходом. Недостатки.
- •Схемы включения полевых транзисторов: общий исток, общий сток, общий затвор
- •Бтиз (igbt) – биполярный транзистор с изолированным затвором. Достоинства по сравнению с моп.
- •Обратные связи (ос): отрицательная обратная связь (оос), положительная обратная связь (пос). Применение. Коэффициент ос. Ос по способам подачи сигнала и по способу снятия сигнала.
- •Ос последовательная по напряжению и по току. Схемы. Основные параметры.
- •Ос параллельная по напряжению и по току. Схемы. Основные параметры.
- •Усилители. Классификация и основные характеристики.
- •Амплитудно-частотные и фозо-частотные характеристики.
- •Усилители постоянного тока (упт). Упт с непосредственной связью между каскадами. Схема. Достоинства и недостатки. Применение.
- •Метод мдм (модуляция-демодуляция). Достоинства и недостатки.
- •Дифференциальные усилители (ду). Схема включения. Ду в режиме покоя, в режиме усиления противофазного сигнала, в режиме усиления синфазного сигнала. Способ улучшения свойств усилителя (схема).
- •Способы компенсации начального напряжения смещения. Схема.
- •Ду с динамической нагрузкой. Схема.
- •Операционные усилители (оу). Графическое изображение. Упрощенная схема оу.
- •Классификация оу по типам входных каскадов: бпт, пт, супер - бпт, с гальванической изоляцией входа от выхода, варикап.
- •Динамическое питание оу. Недостаток
- •Параметры оу (входные, выходные и динамические). Характеристики.
- •Инвертирующие усилители (схемы). Параметры. Достоинства и недостатки.
- •Преобразователь тока в напряжение. Неинвертирующий усилитель (схема). Достоинства и недостатки.
- •Преобразователь "напряжение - ток".
- •Преобразователь "ток-напряжение".
- •Сумматоры и вычетатели. Неинвертирующий сумматор (схема). Недостаток. Инвертирующий сумматор (схема). Достоинства и недостатки. Применение. Вычетатель. Инвертирующий и неинвертирующий сумматоры
- •В ычитатель.
- •Пассивный сумматор.
- •Активный неинвертирующий сумматор.
- •Интегратор и дифференциатор. Схемы. Применение. Интегратор
- •Дифференциатор
- •Компараторы (устройства сравнения). Схемы. Недостатки.
- •Триггер Шмидта (компаратор с гистерезисом). Схемы. Недостаток.
- •Генераторы синусоидальных колебаний. Условия для работы схемы в режиме генерации.
- •Генераторы гармонических сигналов. Схема. Достоинства и недостатки.
- •Кварцевый генератор. Схема. Достоинства и недостатки.
- •Мультивибраторы (генераторы прямоугольных колебаний). Схема.
- •Источники тока на оу.
- •Усилители мощности на оу.
- •Инвертирующий оу с большим Rвх и ku.
- •Повторитель – инвертор.
- •Усилитель фототока с высокой крутизной.
- •Прецизионные выпрямители.
- •Компенсационные источники питания. Параметрические. Достоинства и недостатки.
- •Последовательный компенсационный стабилизатор напряжения на транзисторе. Схема и принцип работы.
- •Понижающий преобразователь. Схема. Принцип работы.
- •Повышающий преобразователь. Схема. Принцип работы.
- •Повышающе – понижающий преобразователь (комбинированный неинвертирующий). Схема. Принцип работы.
- •Повышающе – понижающий инвертирующий преобразователь. Схема. Принцип работы.
- •Функциональная схема ключевого преобразователя напряжения (принципиальная схема). Принцип работы.
- •Резонансные преобразователи.
- •Источники опорного напряжения. Задание рабочего тока стабилитрона, источника тока на оу. Стабилитронные интегральные микросхемы. Источники опорного напряжения
- •Регулируемый стабилизатор
Модель Эмберса – Молла.
Iк = Iэ0(eUбэ/φт – 1)
Начальный ток эмиттерного перехода Iэ0 зависит от мощности транзистора, его конструкции и температуры, а также от ширины эмиттерного перехода.
φT – тепловой потенциал.
φT = кТ/q, где
к – постоянная Больцмана;
q – заряд электрона.
rэ0 = φT/ Iк – внутреннее сопротивление эмиттера.
Тепловой коэффициент Uбэ = 2.1 mВ/ºС. Это означает, что при увеличении напряжения на коллекторе на 1В необходимо уменьшить Uбэ на 1 mВ с целью сохранения тока неизменным.
Нелинейные искажения при Rэ = rэ0.
Кu = Rк/ rэ0 = Rк*Tк/ φT = Uп – Uк/ φT.
Кu увеличивается если увеличивается Iк или меньше Uк.
Схемы задания общей точки. Недостатки. Применение.
Iк0 = Iб0*h21 = (Uп – Uбэ/Rб)*h21.
Недостатки: зависимость от h21.
R
1
осуществляет параллельную ООС по
напряжению, что стабилизирует положение
рабочей точки. Напряжение на базе
определяется напряжением на коллекторе.
Если Iк
по какой – то причине увеличивается,
Uк
– уменьшается, а значит изменяется Uбэ
и ток вернётся к прежнему.
Недостатки: параллельная ООС уменьшает входное сопротивление.
Делим резистор на два и среднюю точку подключаем к земле через конденсатор.
С
устраняет ООС для переменного тока, а
значит увеличивает входное сопротивление.
Токовые зеркала (эффект Эрли). Недостатки. Применение.
I
пр
= Iн.
VT1 и VT2 расположены на одном кристалле в непосредственной близости друг от друга и имеют одинаковые параметры и температуру. То есть имеет место однозначное соответствие между Uбэ и Iк. Задавая ток коллектора на мост транзисторов мы вызываем такое изменение Uбэ, что ток коллектора второго транзистора в точности соответствует току первого.
Недостатки: эффект Эрли.
Эффект Эрли заключается в том, что изменение напряжения между коллектором и эмиттером влечет изменение напряжения между базой и эмиттером.
У
меньшить
эффект Эрли можно введением в эмитторные
цепи резисторов обратной связи либо
путём использования зеркала Уилсона.
Токозадающим является VT1, включённый по схеме с ОЭ.
Uк1 = Uп – 1.2 – подавлен эффект Эрли.
VT3 включён по схеме с ОБ. Усиливает напряжение на Rн таким образом, чтобы обеспечить заданный Iпр.
Токовые зеркала используются в качестве коллекторной нагрузки ДУ и ОУ, что позволяет увеличивать их Кu даже в большей степени, чем при использовании коллекторной нагрузки источника тока. Токовые зеркала и отражатели токов также используются для задания режимов работы сложных электронных устройств и схем в том числе интегральных.
Отражатели тока.
Т
оковые
зеркала используются в качестве
коллекторной нагрузки ДУ и ОУ, что
позволяет увеличивать их Кu
даже в большей степени, чем при
использовании коллекторной нагрузки
источника тока. Токовые зеркала и
отражатели токов также используются
для задания режимов работы сложных
электронных устройств и схем в том числе
интегральных.