
Вопрос 1 Электронная и дырочная проводимость
В полупроводниках при повышении температуры выше абсолютного нуля некоторые электроны валентной зоны получают дополнительную энергию, которой становится достаточно для преодоления запрещённой зоны и перехода на уровень проводимости. В итоге при комнатной температуре в зоне проводимости постоянно присутствует некоторое количество электронов, а в валентной зоне атомов образуется дефицит электронов (дырки).
В итоге полупроводник начинает обладать и электронной и дырочной проводимостью — электронную проводимость осуществляют электроны, свободно перемещающиеся в зоне проводимости, а дырочную — электроны в зоне валентности, способные перескакивать в дырку с соседних атомов. При этом электронная проводимость доминирует над дырочной, так как электроны зоны проводимости перемещаются свободнее, но общая электропроводность полупроводника естественно складывается из этих двух проводимостей.
p - n-ПЕРЕХОД
Перевод
p - n-ПЕРЕХОД
- (электронно-дырочный переход) - слой с пониженной электропроводностью, образующийся на границе полупроводниковых областей с электронной (n -область) и дырочной ( р -область) проводимостью. Различают гомопереход, получающийся в результате изменяющегося в пространстве легирования донорной и акцепторной примесями одного и того же полупроводника (напр., Si), и гетеропереход, в к-ром р-область и n- область принадлежат разл. полупроводникам. Термин " р - п.-П." как правило, применяют к гомопереходам. Обеднённый слой. Из-за большого градиентаконцентрации электронов ( п )и (обратного ему по знаку) градиентаконцентрации дырок ( р )в р - n-П. происходит диффузионноеперетекание электронов из п -об-ласти в р -область и дырокв обратном направлении. Его следствием является накопление избыточногоположит. заряда в n -области и отрицательного - в р -области(рис. 1). При этом появляется электрич. поле, направленное из n -областив р -область, действие к-рого на электроны и дырки (при термодинамич. <равновесии) компенсирует действие градиентов концентрации, т. е. диффузионныепотоки электронов и дырок уравновешиваются дрейфовыми потоками во внутреннемэлектрич. поле Е вн перехода. Поле Е вн обусловливаетдиффузионную разность потенциалов V Д (аналог контактнойразности потенциалов), величина к-рой (для невырожденных носителей)в р- и n -областях выражается ф-лой
Вопрос 2
Классификация полупроводниковых материалов.
Полупроводники представляют собой весьма многочисленный класс материалов. В него входят сотни самых разнообразных веществ – как элементов, так и химических соединений. Полупроводниковыми свойствами могут обладать как неорганические, так и органические вещества, кристаллические и аморфные, твердые и жидкие, немагнитные и магнитные. Несмотря на существенные различия в строении и химическом составе, материалы этого класса роднит одно замечательное качество- способность сильно изменять свои электрические свойства под влиянием небольших внешних энергетических воздействий.
Полупроводниковыми свойствами обладают и некоторые модификации олова и углерода.
Последний существуют двух аллотропных формах – алмаз и графит. Графит по электрическим свойствам близок к проводникам (ΔЭ <0,1 эВ), а чистые алмазы являются диэлектриками. Однако искусственные алмазы за счет вводимых примесей приобретают свойства полупроводников.
Весьма обширна группа полупроводниковых неорганических соединений, которые могут состоять из двух, трех и большего числа элементов. В качестве примеров таких соединений можно привести InSb, Bi 2 Te3 , ZnSiAs2, CuAlS2 , CuGe2P3 . Кристаллическая структура многих соединений характеризуется тетраэдрической координацией атомов, как это имеет место в решетки алмаза. Такие полупроводниковые соединения получили название алмазоподобных полупроводников. Среди них наибольший научный и практический интерес представляют бинарные соединения типа AIII ВV и AII BVI , которые в настоящее время являются важнейшими материалами полупроводниковой оптоэлектроники.