- •61. Пироэлектрический эффект. Теплопроводность. Использование их в тсо
- •62. Эффект Зеебека. Эффект Зеемана. Использование их в тсо
- •63. Эффект Рамана (комбинационное рассеяние света). Использование их в тсо
- •64. Эффект Керра. Эффект Фарадея. Использование их в тсо
- •65. Эффект Холла. Эффект Доплера. Использование их в тсо
- •66. Магнитосопротивление. Магнитострикция. Использование их в тсо
- •67. Системы ip видеонаблюдения. Их возможности. Ip видеонаблюдение. Применение и преимущества
- •68. Системы gsm-охраны.
- •69. Беспроводные извещатели.
- •70. По Кодос Видео Сеть. Возможности, назначение.
- •71. По видеокад. Возможности, назначение.
63. Эффект Рамана (комбинационное рассеяние света). Использование их в тсо
РАМАНА ЭФФЕКТ (комбинационное рассеяние света) - рассеяние света веществом, сопровождающееся изменением его длины волны, к-рое связано с колебаниями и вращениями молекул вещества. Открыт в 1928 Г. С. Ландсбергом и Л. И. Мандельштамом на кристаллах и Ч. В. Раманом (Ch. V. Raman) и К. С. Кришнаном (К. S. Krishnan) на жидкостях. Термин "Р. э." распространён в заруб. литературе. Подробнее см. Комбинационное рассеяние света.
КОМБИНАЦИОННОЕ РАССЕЯНИЕ СВЕТА - рассеяние света в газах, жидкостях и кристаллах, сопровождающееся заметным изменением его частоты. В отличив от рэлеевского рассеяния света, при К. р. с. в спектре рассеянного излучения наблюдаются спектральные линии, отсутствующие в линейчатом спектре первичного (возбуждающего) света. Число и расположение появляющихся линий (наз. комбинационными линиями или спутниками) определяется молекулярным строением вещества. К. р. с. открыто в 1928 Г. С. Ландсбергом и Л. И. Мандельштамом при исследовании рассеяния света в кристаллах и одновременно Ч. В. Раманом и К. С. Кришнаном при исследовании рассеяния света в жидкостях [1, 2]. В зарубежной литературе К. р. с. обычно наз. эффектом Рамана. Спектроскопия К. р. с.- эфф. метод изучения состава и строения вещества.
64. Эффект Керра. Эффект Фарадея. Использование их в тсо
КЕРРА ЭФФЕКТ - название трёх явлений, два из к-рых (I и III) были открыты Дж. Керром (J. Кerr) в 1875 (эл.-оптич. К. э.) и в 1876 (магн.-оптич. К. э.); после появления лазеров в сильных оптич. полях был замечен эффект, аналогичный эл.-оптич. К. э., к-рый назвали оптич. К. э.
Электрооптический К. э.- квадратичный электро-оптич. эффект, возникновение двойного лучепреломления в оптически изотропных веществах (газах, жидкостях, кристаллах с центром симметрии, стёклах) под действием внеш. однородного электрич. поля. Оптически изотропная среда, помещённая в электрич. поле, становится анизотропной, приобретает свойства одноосного кристалла (см. Кристаллооптика ),оптич. ось к-рого направлена вдоль поля.
Регистрируется К. э. обычно по возникновению эллиптичности в проходящем через среду линейно поляризованном световом пучке. Между скрещенными поляризатором (II) (рис. 1) и анализатором (А)располагается Керра ячейка - плоский конденсатор, заполненный прозрачным изотропным веществом. Плоскость поляризации падающего на ячейку излучения составляет угол 45° с направлением поля. В отсутствие поля свет не проходит через анализатор. Индуцируемая электрич. полем оптич. анизотропия среды приводит к различию показателей преломления пе и пo необыкновенной и обыкновенной компонент пучка, поляризованных соответственно вдоль и поперёк поля. Имея разные скорости, эти компоненты по мере распространения через среду приобретают разность фаз и, складываясь на выходе из среды (см. Интерференция поляризованных лучей ),образуют эллиптически поляризованный свет, к-рый частично проходит через анализатор. О величине эффекта можно судить по интенсивности прошедшего через анализатор света, регистрируемой фотоприёмником ФП.
ФАРАДЕЯ ЭФФЕКТ - один из эффектов магнитооптики, заключающийся во вращении плоскости поляризации линейно поляризованного света, распространяющегося в веществе вдоль пост. магн. поля, в к-ром находится это вещество. Открыт М. Фарадеем (М. Faraday) в 1845 и явился первым доказательством прямой связи оптич. и эл.-магн. явлений.
Феноменологич. объяснение Ф. э. заключается в том, что в общем случае намагниченное вещество нельзя охарактеризовать одним показателем преломления п. Под действием магн. поля показатели преломления п+ и п_ для циркулярно право- и левополяризованного света становятся различными. Вследствие этого при прохождении через среду вдоль магн. поля право- и левополяризованные составляющие линейно поляризованного излучения распространяются с разными фазовыми скоростями, приобретая разность хода, линейно зависящую от оптической длины пути
