Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Bilety (1).docx
Скачиваний:
2
Добавлен:
01.04.2025
Размер:
1.04 Mб
Скачать

11. Радиусы атомов и ионов. Орбитальные и эффективные радиусы. Изменение атомных и ионных радиусов в периодах и группах п.С. Эффекты d- и f-сжатия.

Ио́нный ра́диус — характерный размер шарообразных ионов, применяемый для вычисления межатомных расстояний в ионных соединениях. Понятие ионный радиус основано на предположении, что размеры ионов не зависят от состава молекул, в которые они входят. На него влияет количество электронных оболочек и плотность упаковки атомов и ионов в кристаллической решётке. Ионный радиус зависит от многих факторов, таких как заряд и размер ядра, количество электронов в электронной оболочке, её плотность, обусловленная кулоновским взаимодействием.

Радиус атома с увеличением зарядов ядер атомов в периоде уменьшается, т.к. притяжение ядром электронных оболочек усиливается. Происходит своеобразное их сжатие. В начале периода расположены элементы с небольшим числом электронов на внешнем электронном слое и большим радиусом атома. Электроны, находящиеся дальше от ядра, легко от него отрываются, что характерно для элементов-металлов. В одной и той же группе с увеличением номера периода атомные радиусы возрастают, т.к. увеличение заряда атома оказывает противоположный эффект.

Атомный радиус - характеристика атомов, позволяющая приблизительно оценивать межатомные расстояния в веществах.  Ионный радиус - величина, характеризующая размер катионов и анионов. 

Радиус атома - границы электронного облака. Вследствие принципа неопределенности не может быть точно определен. Если за радиус свободного атома принимается положение главного максимума плотности внешних электронных облаков, это называется орбитальным радиусом.

Изменение атомных радиусов в периодической системе носит периодический характер, так как определяется свойствами электронных оболочек. В периодах атомные радиусы в общем уменьшаются, в подгруппах - увеличиваются.

Радиусы атомов, связанных между собой, называют эффективными. Эффективные радиусы определяют при изучении строения молекул и кристаллов.

Во многих случаях кратчайшее расстояние между двумя атомами действительно примерно равно сумме соответствующих атомных радиусов. В зависимости от типа связи между атомами различают металлическиеионныековалентные и некоторые другие атомные радиусы.

При движении по периодам и группам таблицы Д.И. Менделеева (сверху вниз) заряд ядра и суммарный заряд электронов увеличиваются, и силы притяжения между ними возрастают. Однако следует иметь ввиду, что, если заряд ядра можно условно рассматривать как точечный, то электроны распределяются по энергетическим уровням. С увеличением числа уровней (слоев) электроны удаляются от ядра, и силы притяжения между ядром и электронами ослабляются. Далее надо учесть, что каждый уровень "расщепляется" на подуровни. Среди подуровней появляются d- и f-подуровни, наиболее плотно заполненные электронами. Начинает действовать эффект d- и f-сжатия, конкурирующий с удалением электронов от ядра.

12. Энергия сродства к электрону. Факторы, определяющие величину сродства к электрону. Изменение величин сродства по периодам и группам Период.Сис.

Сродство атома к электрону Ae - способность атомов присоединять добавочный электрон и превращаться в отрицательный ион. Мерой сродства к электрону служит энергия, выделяющая или поглощающаяся при этом. Сродство к электрону равно энергии ионизации отрицательного иона Х:

Х = Х + е

Наибольшим сродством к электрону обладают атомы галогенов. Например, для атома фтора присоединение электрона сопровождается выделением 327,9 кДж/моль энергии.

Эне́ргией сродства́ а́тома к электро́ну, или просто его сродством к электрону (ε), называют энергию, выделяющуюся в процессе присоединения электрона к свободному атому Э в его основном состоянии с превращением его в отрицательный ион Э (сродство атома к электрону численно равно, но противоположно по знаку энергии ионизации соответствующего изолированного однозарядного аниона).

Э + e = Э + ε

Сродство к электрону выражают в килоджоулях на моль (кДж/моль) или в электронвольтах на атом (эВ/атом).

В отличие от ионизационного потенциала атома, имеющего всегда эндоэнергетическое значение, сродство атома к электрону описывается как экзоэнергетическими, так и эндоэнергетическими значениями

Наибольшим сродством к электрону обладают p-элементы VII группы. Наименьшее сродство к электрону у атомов с конфигурацией s2 (BeMgZn) и s2p6 (NeAr) или с наполовину заполненными p-орбиталями (NPAs)

Наибольшим сродством к электрону обладают атомы галогенов. Для ряда элементов сродство к электрону близко к нулю или меньше нуля. Последнее означает, что для данного элемента устойчивого отрицат. иона не существует. В табл. 1 приведены значения сродства к электрону атомов, полученные методом фотоэлектронной спектроскопии (работы У. Лайнебергера с сотрудниками).

Сродство к электрону молекул составляет, как правило, От 0 до 4 эВ (табл. 2).

Обнаружены молекулы с очень высокими значениями сродства к электрону-гекса-, пента- и тетрафториды переходных металлов. Наибольшим из известных в настоящее время значений сродства к электрону обладает PtF6 (7,00 b 0,35 эВ).

Сродство к электрону определяет окислит. способность частицы. Молекулы с высокими значениями сродства к электрону-сильныеокислители. С их помощью были получены хим. соед. благородных газов, соед. внедрения в графите.

Существование многозарядных (Двух- и более) многоатомных отрицат. ионов в основном состоянии в газовой фазе до сих пор экспериментально не подтверждено. Возможен лишь квантовомех. расчет или расчет по циклу Борна-Габера второго или более высокого сродства к электрону для молекул. Для ряда молекул второе сродство к электрону, полученное таким способом, является существенно положительным (PtF6 3,8 эВ, CrF6 2,44 эВ).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]