
- •Неінерціальні системи відліку. Кінематика відносного руху.
- •14. Неінерціальні системи відліку. Сили інерції.
- •15. Постулати спеціальної теорії відносності. Перетворення Лоренца та висновки з них.
- •16 Постулати спеціальної теорії відносності. Перетворення і додавання швидкостей в теорії відносності
- •17 Збереження імпульсу в теорії відносності. Зв’язок між масою та енергією.
- •18 Принцип еквівалентності. Поняття про загальну теорію відносності.
Неінерціальні системи відліку. Кінематика відносного руху.
Закони Ньютона, як відомо, справедливі лише в тих системах відліку, які рухаються одні відносно одних прямолінійно і рівномірно. Такі системи відліку називаються інерціальними системами відліку. В таких системах відліку основним рівнянням руху матеріальної точки є рівняння, яке виражає другий закон Ньютона:
На практиці часто доводиться мати справу з системами відліку, які рухаються відносно інерціальних систем відліку з прискоренням. Такі системи відліку називаються неінерціальними. Матеріальна точка внеінерціальній системі відліку може рухатися прискорено під дією сил, виникнення яких не можна пояснити дією якихось окремих тіл. Ці сили називаються силами інерції.
Перший закон Ньютона в неінерціальних системах немає сенсу.
Оскільки в неінерціальних системах відліку крім сил взаємодії існують ще і сили інерції, то третій закон Ньютона настільки спотворюється, що і він втрачає чіткий фізичний зміст. Для сил інерції протидії не існує. Сили інерції зумовлені властивістю тіл зберігати стан спокою або рівномірного прямолінійного руху.
Другий закон Ньютона в неінерціальних системах має вигляд:
де
–
прискорення тіла, визначене в неінерціальній
системі відліку,
–
сили інерції.
Положення тіл у просторі задається тільки відносно інших тіл. Тому положення тіла відносно різних тіл та пов’язаних із ними систем координат буде різним. Так само у різних системах відліку переміщення та швидкість тіла будуть різними. Наприклад, водій автомобіля рухається відносно дороги, а відносно салону автомобіля знаходиться у спокої; учень на уроці відносно стільця знаходиться у спокої, але рухається разом з Землею навколо Сонця.
Швидкість тіла відносно нерухомої системи відліку дорівнює геометричній сумі швидкості тіла відносно рухомої системи і швидкості рухомої системи відносно нерухомої. Припустімо, що пасажир рухається в вагоні потягу, який теж рухається. Для того щоб знайти швидкість пасажира відносно землі, необхідно векторно додати швидкість пасажира відносно вагону і швидкість потягу відносно землі.
Переміщення відносно нерухомої системи відліку дорівнює геометричній сумі переміщення тіла відносно рухомої системи і переміщення рухомої системи відносно нерухомої.
Відносністю руху досить цікаво користуються для поповнення пальним баків літака у повітрі. Незважаючи на те що відносно поверхні землі, атмосферного повітря літаки мчать зі швидкостями кілька сотень кілометрів за годину, один відносно одного літаки перебувають у спокої.
14. Неінерціальні системи відліку. Сили інерції.
Си́ла іне́рції — фіктивна сила, яку вводять для опису динаміки механічного руху в неінерційних системах відліку.
,
де
—
сила інерції, m — маса,
— прискорення,
з яким рухається система координат.
На погляд спостерігача, який рухається з прискоренням, навколишні фізичні тіла здійснюють рухи, які не відповідають тим силам, що на них діють. Так, наприклад, коли потяг рушає з місця, спостерігачу, який сидить у вагоні, здається, що вокзал рушив у протилежний бік, хоча на нього не діють жодні сили.
Для того, щоб мати змогу застосовувати Ньютонівську механіку в неінерційній системі координат, вводяться фіктивні сили інерції, що діють у цій системі на всі тіла. Так, на погляд спостерігача у вагоні потягу, другий закон Ньютона виконується, якщо на вокзал діє сила -ma, де m — маса вокзалу, a — прискорення руху спостерігача.
Сила інерції в системі, що обертається
У системі, що обертається довкола осі, сила інерції набирає вигляд:
,
де
кутова
швидкість, а v швидкість об'єкта в
системі, що обертається.
Перший
доданок у формулі (1) називається силою
Коріоліса, ця сила перпендикулярна
до швидкості. Другий доданок — це
відцентрова сила, а третій враховує
кутове прискорення неінерційної системи
координат.
Си́ла Коріолі́са (за
іменем французького вченого Г. Г. Коріоліса) —
одна з сил
інерції, що існує в системі
відліку, що обертається, і
виявляється при русі в напрямі під кутом до
осі обертання. Причина появи сили
Коріоліса в коріолісовому прискоренні.
Для того, щоб тіло рухалося з коріолісовим
прискоренням, необхідне прикладення
сили до тіла, рівної F = ma, де а —
коріолісове прискорення.
Відповідно, тіло діє згідно
із третім законом Ньютона з
силою протилежної спрямованості.FK = —
ma. Сила, яка діє з боку тіла, і називатиметься
силою Коріоліса.
При обертанні диска, дальші від центру точки рухаються з тим більшою дотичною швидкістю, чим менш далекі. Якщо ми хочемо перемістити деяке тіло уздовж радіусу, так, щоб воно залишалося на радіусі, то нам доведеться збільшити швидкість тіла, тобто, додати йому прискорення. Якщо наша система відліку обертається разом з диском, то ми відчуємо, що тіло «не хоче» залишатися на радіусі, а «норовить» зміститися — це і є сила Коріоліса.
У інерціальних системах відліку діє закон інерції, тобто, кожне тіло прагне рухатися по прямій і з постійною швидкістю. Якщо розглянути рух тіла, рівномірний уздовж деякого радіуса, що обертається, і направлений від центру, то стане ясно, що для того щоб воно здійснилося, потрібно додавати тілу прискорення, оскільки чим далі від центру, тим більше повинна бути дотична швидкість обертання. Це означає, що з погляду системи відліку, що обертається, якась сила намагатиметься змістити тіло з радіуса.
Якщо обертання відбувається за годинниковою стрілкою, то тіло, що рухається від центру обертання, прагне зійти з радіуса вліво. Якщо обертання відбувається проти годинникової стрілки — то вправо.
Коріолісове прискорення
У системі координат, яка обертається
навколо осі із кутовою
швидкістю
,
тіло, що рухається із лінійною швидкістю
,
має прискорення
.
Відповідна сила, яка змушує тіло рухатися з таким прискоренням повинна дорівнювати
,
де m — маса тіла.
Коріолісова сила перпендикулярна до вісі обертання і до швидкості тіла. Якщо тіло рухається вздовж осі обертання, коріолісової сили не виникає. Найбільше значення коріолісова сила має тоді, коли тіло рухається перпендикулярно до вісі обертання.
[ред.]Прояв Коріолісової сили
Сила Коріоліса виявляється, наприклад, в роботі маятника Фуко. Крім того, оскільки Земля обертається, то сила Коріоліса виявляється і в глобальних масштабах. У північній півкулісила Коріоліса направлена вправо від руху, тому праві береги річок в північній півкулі крутіші — їх підмиває вода під дією цієї сили. У південній півкулі все відбувається навпаки. Сила Коріоліса відповідальна також і за виникнення циклонів і антициклонів. Саме силою Коріоліса пояснюється в три рази більше зношення правої рейки залізничної колії, ніж лівої.
Всупереч популярній думці, малоймовірно, що сила Коріоліса впливає на напрям закручування води у водопроводі, оскільки Земля обертається дуже поволі (один оберт за добу), і ця сила дуже мала.