
- •Скорость движения точки по прямой. Мгновенная скорость. Нахождение координаты по известной зависимости скорости по времени.
- •Мгновенная скорость ( )
- •Закон инерции. Инерциальные системы отсчета, система Коперника. Второй закон Ньютона. Третий закон и область его применимости.
- •Закон сохранения импульса в изолированной системе из двух материальных точек. Теорема о движении центра масс.
- •Закон сохранения момента импульса
- •Вращение твердого тела вокруг неподвижной оси. Угловая скорость и угловое ускорение. Связь между динамическими и кинематическими характеристиками вращения твердого тела.
- •Гармонический осциллятор. Превращение энергии при колебаниях осциллятора. Гармонический осциллятор
- •Примеры гармонических осцилляторов (физический маятник, математический маятник, крутильный маятник)
- •Основные законы гидростатики. Барометрическая формула. Распределение Больцмана.
- •Поверхностное натяжение и лапласово давление. Капиллярный эффект, когезия и адгезия.
- •Понятие потока жидкости (газа) и уравнение непрерывности. Вывод уравнения Бернулли.
- •Анализ уравнения Бернулли
- •Преобразование Галилея. Механический принцип относительности. Постулаты специальной (частной теории) относительности. Преобразование Лоренца и следствия из них.
- •Основные положения молекулярно- кинетической теории. Вывод основного уравнения кинетической теории газов.
- •Вывод основных газовых законов. Уравнение состояния идеальных газов. Универсальная газовая постоянная.
- •Распределение скоростей молекул по Максвеллу. Наивероятнейшая скорость.
- •Теплоемкость, закон Джоуля, уравнение Роберта Майера. Способы измерения теплоемкостей твердых и жидких тел.
- •Обратимые и необратимые процессы. Равновесные и неравновесные процессы. Изопроцессы в газах. Круговые процессы или циклы.
- •Третий закон (третье начало) термодинамики– pабсолютный нуль температуры недостижим. К абсолютному нулю можно лишь асимптотически приближаться, никогда не достигая его.
- •Испарение и кипение. Плавление и кристаллизация.
- •Свойства электрического заряда. Закон Кулона , системы единиц. Электрическое поле. Напряженность электрического поля.
- •Вычисление напряженности поля систем зарядов. Объёмная, поверхностная и линейная плотность заряда.
- •Понятие потока вектора. Теорема Гаусса. Применение теоремы Гаусса для расчета симметрических полей.
- •Дивергенция, циркуляция, ротор вектора, их свойства. Теорема Стокса. Условие потенциальности. Теорема Остроградского- Гаусса. Теорема Гаусса в дифференциальной форме.
- •Свойства, непосредственно получаемые из обычных правил дифференцирования
- •[Править] Теорема Стокса
- •Граничные условия Еn и Еt.
- •Связь между потенциалом и напряженностью электрического поля.
- •Эквипотенциальные поверхности. Вычисление потенциала в поле заданных зарядов (точечный заряд, система точечных зарядов, непрерывно распределенный заряд).
- •Заряды и поле в проводниках ,электростатическая индукция. Общая задача электростатики проводников. Уравнение Пуассона, уравнение Лапласа.
- •Электроемкость, диэлектрическая проницаемость. Конденсаторы. Энергия электрического поля
- •Поляризация диэлектриков. Электрический диполь. Поляризованность.
- •Источники тока. Характеристика электрического тока. Сторонние силы. Э.Д.С. Напряжение.
- •Эмиссия электронов. Термоэлектронная эмиссия. Электронные лампы. Ламповый выпрямитель. Сеточная характеристика лампы. Ток в газах.
- •Полупроводники. Собственная проводимость полупроводников. Примесная проводимость полупроводников. P- n – переход. Запирающий слой. Вольт- амперная характеристика полупроводникового диода.
Эмиссия электронов. Термоэлектронная эмиссия. Электронные лампы. Ламповый выпрямитель. Сеточная характеристика лампы. Ток в газах.
ЭЛЕКТРОННАЯ ЭМИССИЯ – испускание электронов поверхностью твердого тела или жидкости. Чтобы электрон покинул конденсированную среду в вакууме или газе, должна быть затрачена энергия, которую называют работой выхода. Зависимость потенциальной энергии электрона от координаты на границе эмиттера и вакуума (или иной среды) называют потенциальным барьером. Его и должен преодолеть электрон, выходя из эмиттера
Термоэлектро́нная эми́ссия (эффект Ричардсона, эффект Эдисона) — явление испускания электронов нагретыми телами. Концентрация свободных электронов в металлах достаточно высока, поэтому даже при средних температурах вследствие распределения электронов по скоростям (по энергии) некоторые электроны обладают энергией, достаточной для преодоления потенциального барьера на границе металла. С повышением температуры число электронов, кинетическая энергия теплового движения которых больше работы выхода, растет, и явление термоэлектронной эмиссии становится заметным.
Электро́нная ла́мпа, радиола́мпа — электровакуумный прибор (точнее, вакуумный электронный прибор), работающий за счёт управления интенсивностью потока электронов, движущихся в вакууме или разрежённом газе между электродами.
АНОДНО-СЕТОЧНАЯ ХАРАКТЕРИСТИКА – графическое изображение зависимости анодного тока электронной лампы от величины электрического напряжения на управляющей сетке при неизменном анодном напряжении. Зависимость Ia = f(Uc1) изображается в прямоугольных координатах. По оси ординат откладывается значение анодного тока, абсцисс – напряжения на сетке. Анодно-сеточные характеристики представляют собой семейство кривых Ia =f(Uc1) для различных значений анодного напряжения.
Если на два электрода, разделённых газовым промежутком, подать напряжение, то ток в общем случае не пойдёт, так как поле есть, а свободных зарядов нет, газ состоит из нейтральных молекул. Для того, чтобы из этих молекул образовались свободные заряды - положительные ионы и электроны, необходим внешний ионизатор, например, ультрафиолетовая лампа. Излучение такой лампы производит ионизацию части молекул газа, возникает электрический ток. Ионы движутся к аноду, электроны - к катоду. Разряд такого типа, то есть с внешним ионизатором, называется несамостоятельным газовым разрядом.
Если же свободные заряды образуются в газе в процессе самого разряда, без внешней помощи, разряд называется самостоятельным. Например, если в описанном выше несамостоятельном разряде повышать напряжение, кинетической энергии ионов, "бомбардирующих" катод, может оказаться достаточно для выбивания из катода вторичных электронов, которые, набирая энергию в поле, способны произвести ионизацию молекул газа при столкновениях с ними. Несамостоятельный разряд перейдёт в самостоятельный, внешний ионизатор уже будет не нужен.
Самостоятельные газовые разряды классифицируются определённым образом, в зависимости от типа эмиссии на катоде и типа ионизации молекул газа. Подробная классификация достаточно ветвиста, неоднозначна, поэтому, думаю, не стоит в курсе общей физики для нефизиков забивать этим голову.
Зависимость силы тока от напряжения на электродах зависит от типа разряда и является достаточно многообразной.