
- •1.Методика расчета схемы регенеративного подогрева питательной воды. Примеры тепловых балансов подогревателей поверхностного и смешивающего типов.
- •1. Цикл гту и его изображение в h,s диаграмме. Кпд гту. Область применения гту. Основные преимущества гту по сравнению с пту.
- •2. Классификация и состав органического топлива. Условное топливо и его теплота сгорания рабочей массы. Тепловой эквивалент.
- •Экзаменационный билет № 3
- •1.Классификация гидротурбин. Основные элементы проточного тракта реактивных гидротурбин. Диапазон изменения кпд гидротурбин.
- •13.Активные гидротурбины.
- •1 3.Основные элементы проточного тракта реактивных гидротурбин.
- •Экзаменационный билет № 4
- •1. Системы удаления золы и шлака на электростанциях.
- •2. Цикл гту и его изображения в h,s диаграмме. Кпд гту. Область применения гту. Основные преимущества гту по сравнению с пту.
- •(Цикл Брайтона)
- •Цикл гту с регенерацией теплоты
- •Билет №5 Водохранилища.
- •Прямой и обратный баланс парогенератора.
- •Билет №6
- •Основные методы восполнения потерь пара и конденсата на тэс.
- •Очистка дымовых газов. Аппараты для очистки. Принципы работы и эффективность. Роль дымовых труб.
- •Парогазовые установки. Тепловые схемы и элементы пгу. Основы повышения кпд пгу. Перспективы развития пгу.
- •1. Классификация тепловых электростанций на органическом топливе. Назначение кэс и тэц. Технологическая схема паротурбинной электростанции.
- •2. Парогазовые установки. Тепловые схемы и элементы пгу. Основы повышения кпд пгу. Перспективы развития пгу.
- •1. Очистка дымовых газов. Аппараты для очистки. Принципы работы и эффективность. Роль дымовых труб.
- •Дымова́я труба́ или дымохо́д — труба для отвода дымовых газов в атмосферу. Обычно вертикальная труба, но может содержать отдельные горизонтальные или наклонные участки.
- •2. Парогазовые установки. Тепловые схемы и элементы пгу. Основы повышения кпд пгу. Перспективы развития пгу.
- •15 Билет
- •1 Вопрос )
- •Принципиальная технологическая схема паросиловой установки.
- •2 Вопрос
- •- Газовые турбины;
- •- Воздушный компрессор;
- •- Электрогенератор.
- •2 Вопрос кпд тэц по производству электроэнергии и отпуску тепла в том числе и через условное топливо. Полные и удельные расходы топлива на тэц по выработке электроэнергии и отпуску тепла.
- •- Газовые турбины;
- •- Воздушный компрессор;
- •- Электрогенератор.
- •2 Вопрос кпд тэц по производству электроэнергии и отпуску тепла в том числе и через условное топливо. Полные и удельные расходы топлива на тэц по выработке электроэнергии и отпуску тепла.
- •Билет № 17.
- •Режим работы гэс и гаэс в энергосистеме.
- •2. Определение кпд, удельного расхода тепла и удельного расхода топлива (в том числе и условного топлива) на кэс. Кпд брутто и нетто. Диапазон изменения.
- •Билет № 18.
- •1. Парогазовые установки. Тепловые схемы и элементы пгу. Основы повышения кпд пгу. Перспективы развития пгу. Парогазовые установки (пгу).
- •2. Классификация гидротурбин. Основные элементы проточного тракта реактивных гидротурбин. Диапазон изменения кпд гидротурбин.
- •Билет 19
- •Вопрос1. Определение полного расхода пара для турбин без отборов и с отборами пара (например, для регенеративного подогрева питательной воды). Определение удельного расхода пара.
- •Вопрос2. Принципы работы гидростанций (гэс и гаэс). Определение электрической мощности и энергии, вырабатываемой на гидростанции. Понятие расхода, стока, напора. Схемы концентрации напора.
- •Парогенераторы тепловых электростанций
- •Прямой и обратный баланс парогенератора.
- •Система кпд паротурбинных установок.
- •Технико-экономические показатели паротурбинных электростанций.
- •Билет №21
- •2)Очистка дымовых газов. Аппараты для очистки. Принципы работы и эффективность. Роль дымовых труб.
- •Удаление золы и шлака с территории станции.
- •Билет № 22
- •Принцип работы гидростанций (гэс и гаэс). Определение электрической мощности и энергии, вырабатываемой на гидростанции. Понятия расходаЮ стока, напора. Схемы концентрации напора.
- •Деаэрация питательной воды. Типы деаэраторов. Тепловой баланс деаэратора.
- •Вопрос 2.
- •По назначению:
- •По параметрам пара:
- •2. Кпд тэц по производству электроэнергии и отпуску тепла, в том числе и через условное топливо. Полные и удельные расходы топлива на тэц по выработке электроэнергии и отпуску тепла.
- •1. Гидротехнические сооружения гэс. Плотины гэс, их назначение и классификация.
- •2.Цикл Ренкина и его изображение в p, V и t, s диаграммах. Термический кпд цикла и способы его повышения.
- •Вопрос 1. Конденсационные турбины
- •2 Вопрос. Классификация гидротрубин.
- •Газотурбинные установки (гту).
1 3.Основные элементы проточного тракта реактивных гидротурбин.
Основными элементами проточной части реактивных гидротурбин (рис. 9.7) кроме описанного ранее рабочего колеса, являются: турбинная (спиральная) камера 1, статор турбины 2, направляющий аппарат 3, камера с рабочим колесом 4, отсасывающая труба 5, камера рабочего колеса 6.
Вода из верхнего, бьефа низконапорных ГЭС поступает непосредственно к турбинной камере, предназначенной для подвода воды на рабочее колесо. В высоконапорных гидроэлектростанциях вода к турбинной камере направляется по трубопроводу.
Турбинные камеры. Различают открытые и спиральные турбинные камеры. Для малых турбин (0^1,6 м) и низких 'напоров (9—10 м) турбинные камеры выполняются открытыми. Для средних и крупных турбин — спиральными. При Этом, если напор менее 40 м, спирали изготовляются бетонными таврового сечения (рис.. 9.8,а), при более высоких напорах — металлическими (сварными или литыми) круглого сечения (рис. 9.8,6).
П
лощадь
входного сечения спирали зависит от
расхода и скорости потока. Для сохранения
постоянной скорости воды в спирали
сечение последней уменьшается по мере
поступления воды в направляющий аппарат.
Угол охвата спирали <р°Мако
отсчитывается от начального сечения
до ее концевой части, называемой зубом
-спирали: В бетонных спиральных
камерах этот угол принимается не менее
180°, для стальных достигает 345—360°.
Снижение угла φ°макс для низконапорных
ГЭС приводит к уменьшению ширины
подводящего водовода (размер В на
рис. 9.8) и объема строительных работ.
Статор турбины служит для передачи нагрузки на фундамент ГЭС от вращающихся частей агрегата, осевого усилия воды и массива здания электростанции, расположенного над спиралью. Статор обычно состоит из отдельно поставленных колонн, связанных между собой при помощи верхнего и нижнего поясов. Число колонн по соображениям уменьшения сопротивлений потоку обычно выбирается вдвое меньше числа направляющих лопаток. Конструктивно колонны располагаются так, чтобы между выходной кромкой колонны и направляющей лопаткой оставался достаточный зазор. Размеры колонны в плане, их конфигурация и расположение целиком определяются геометрическими данными спирали, условиями обтекания, а также условиями прочности.
Н
аправляющий
аппарат служит для подвода воды к
рабочему колесу, регулирования
расхода в соответствии с развиваемой
мощностью генератора, закрытия доступа
воды к турбине при ее остановке и создания
определенного направления (закрутки)
потока.
2. Многоступенчатые паровые турбины, основные преимущества по сравнению с одноступенчатыми. Изображение процесса расширения пара в турбине в h,S диаграмме. Определение мощности турбины через теплоперепад.
Основные преимущества многоступенчаюй турбины заключаются в следующем.
1. С применением значительного числа ступеней можно для каждой ступени выбрать небольшой теплоперепад, даже при умеренных окружных скоростях рабочих лопаток обеспечить значения н/гф, при которых КПД отдельных ступеней достигают максимума.
2. Уменьшение теплопсрепада и связанное с л им уменьшение диаметра ступени (при заданной час готе вращения) приводит к увеличению высот сопловых и рабочих лопаток или к увеличению степени парциальности(всё равно что прирастание) в тех ступенях, которые работают с малыми объемными расходами пара, как, например, ступени, расположенные в области значительных давлений пара, где удельные объемы пара невелики. В связи с этим даже при мощностях турбины 4000- 6000 кВт и частоте вращения /? = 50 1/с во всех ступенях турбины, за исключением регулирующей, обычно удается обеспечить степень парциальнрети, равную единице, и достаточную высоту сопловых и рабочих лопаток.
В регулирующей ступени степень парциальное™ не достигает единицы, так как наличие стенок, отделяющих одну сопловую группу от другой, заставляет сохранять промежутки между сопловыми группами, уменьшающие степень парциальпости. Даже если пар в регулирующей ступени подводится по всей окружности, степень парциальности в ней составляет не более 0,8—0,96.
Достижение полной парциальности и достаточной высоты лопаток нерегулируемых ступеней многоступенчатых турбин является существенным фактором повышения КПД турбины.
При удачном очертании проточной части кинетическая энергия потока пара, покидающего ступень турбины, может быть частично или даже полностью использована в последующей ступени. Таким образом, увеличивается располагаемый теплоперепад Н0 > Н0 большинства ступеней. Выходная скорость полностью теряется обычно лишь в регулирующей и в последних ступенях турбины и ее отдельных цилиндров.
Потери энергии в каждой ступени турбины вызывают повышение температуры пара перед последующими ступенями. Таким образом, потери в предыдущей ступени вызывают увеличение теплоперепада в последующих ступенях и могут быть в них частично использованы.
В результате сумма располагаемых тепловых перепадов в многоступенчатой турбине больше, чем располагаемый теплоперепад, взятый для всей турбины по основной изоэнтропе Ит0.
Возможность частичного использования в последующих ступенях потерь при течении в предыдущих ступенях также является существенным преимуществом многоступенчатой турбины.
5. В многоступенчатой турбине могут быть выполнены отборы пара для регенеративного подогрева питательной воды, что позволяет существенно повысить экономичноеть теплового цикла, т. е. КПД гурбоустановки.
Перечисленные положительные факторы позволяют достигнуть в многоступенчатой турбине и во всей турбоустановке повышенной экономичности. Наряду с этим в многоступенчатой турбине возникают дополнительные потери, которых нет в одноступенчатых турбинах или которые не имеют в этих турбинах существенного значения. Так, например, потери от перетекания пара, которыми можно пренебрегать в одноступенчатых турбинах, в многоступенчатых турбинах сказываются иногда довольно сильно.
Поскольку в камере регулирующей ступени давление выше атмосферного, часть пара, вышедшего из сопловых групп регулирующей ступени, вытекает через уплотнение из камеры ступени и не принимает участия в работе последующих ступеней (см. § 5,3). Кроме того, утечки пара происходят также через уплотнение промежуточной диафрагмы, так что не все количество пара, идущего к последующим ступеням турбины, проходит через сопла диафрагмы; возникают также утечки пара через радиальные зазоры рабочих лопаток. Наличие этих утечек может привести к значительному снижению КПД ступени, особенно в тех ступенях, которые работают с небольшими объемными пропусками пара (см. § 4.3). При правильном выборе конструкции удается снизить эти добавочные
потери и обеспечить в многоступенчатой турбине высокий КПД.
Однако следует иметь в виду, что многоступенчатые турбины являются сложными и дорогостоящими машинами, применение которых оправдывается достижением необходимой экономичности.
Если для турбин большой мощности выигрыш в повышении КПД при их выполнении многоступенчатыми существеннее удорожания конструкции, то для турбин малой мощности. применяемых для привода различных агрегатов, вопрос о том, выполнять ли турбину одно- или многоступенчатой, решается на основе технико-экономических расчетов. В транспортных установках выбор числа ступеней связан также с ограничением массы и габаритов турбины.