- •1.Методика расчета схемы регенеративного подогрева питательной воды. Примеры тепловых балансов подогревателей поверхностного и смешивающего типов.
- •1. Цикл гту и его изображение в h,s диаграмме. Кпд гту. Область применения гту. Основные преимущества гту по сравнению с пту.
- •2. Классификация и состав органического топлива. Условное топливо и его теплота сгорания рабочей массы. Тепловой эквивалент.
- •Экзаменационный билет № 3
- •1.Классификация гидротурбин. Основные элементы проточного тракта реактивных гидротурбин. Диапазон изменения кпд гидротурбин.
- •13.Активные гидротурбины.
- •1 3.Основные элементы проточного тракта реактивных гидротурбин.
- •Экзаменационный билет № 4
- •1. Системы удаления золы и шлака на электростанциях.
- •2. Цикл гту и его изображения в h,s диаграмме. Кпд гту. Область применения гту. Основные преимущества гту по сравнению с пту.
- •(Цикл Брайтона)
- •Цикл гту с регенерацией теплоты
- •Билет №5 Водохранилища.
- •Прямой и обратный баланс парогенератора.
- •Билет №6
- •Основные методы восполнения потерь пара и конденсата на тэс.
- •Очистка дымовых газов. Аппараты для очистки. Принципы работы и эффективность. Роль дымовых труб.
- •Парогазовые установки. Тепловые схемы и элементы пгу. Основы повышения кпд пгу. Перспективы развития пгу.
- •1. Классификация тепловых электростанций на органическом топливе. Назначение кэс и тэц. Технологическая схема паротурбинной электростанции.
- •2. Парогазовые установки. Тепловые схемы и элементы пгу. Основы повышения кпд пгу. Перспективы развития пгу.
- •1. Очистка дымовых газов. Аппараты для очистки. Принципы работы и эффективность. Роль дымовых труб.
- •Дымова́я труба́ или дымохо́д — труба для отвода дымовых газов в атмосферу. Обычно вертикальная труба, но может содержать отдельные горизонтальные или наклонные участки.
- •2. Парогазовые установки. Тепловые схемы и элементы пгу. Основы повышения кпд пгу. Перспективы развития пгу.
- •15 Билет
- •1 Вопрос )
- •Принципиальная технологическая схема паросиловой установки.
- •2 Вопрос
- •- Газовые турбины;
- •- Воздушный компрессор;
- •- Электрогенератор.
- •2 Вопрос кпд тэц по производству электроэнергии и отпуску тепла в том числе и через условное топливо. Полные и удельные расходы топлива на тэц по выработке электроэнергии и отпуску тепла.
- •- Газовые турбины;
- •- Воздушный компрессор;
- •- Электрогенератор.
- •2 Вопрос кпд тэц по производству электроэнергии и отпуску тепла в том числе и через условное топливо. Полные и удельные расходы топлива на тэц по выработке электроэнергии и отпуску тепла.
- •Билет № 17.
- •Режим работы гэс и гаэс в энергосистеме.
- •2. Определение кпд, удельного расхода тепла и удельного расхода топлива (в том числе и условного топлива) на кэс. Кпд брутто и нетто. Диапазон изменения.
- •Билет № 18.
- •1. Парогазовые установки. Тепловые схемы и элементы пгу. Основы повышения кпд пгу. Перспективы развития пгу. Парогазовые установки (пгу).
- •2. Классификация гидротурбин. Основные элементы проточного тракта реактивных гидротурбин. Диапазон изменения кпд гидротурбин.
- •Билет 19
- •Вопрос1. Определение полного расхода пара для турбин без отборов и с отборами пара (например, для регенеративного подогрева питательной воды). Определение удельного расхода пара.
- •Вопрос2. Принципы работы гидростанций (гэс и гаэс). Определение электрической мощности и энергии, вырабатываемой на гидростанции. Понятие расхода, стока, напора. Схемы концентрации напора.
- •Парогенераторы тепловых электростанций
- •Прямой и обратный баланс парогенератора.
- •Система кпд паротурбинных установок.
- •Технико-экономические показатели паротурбинных электростанций.
- •Билет №21
- •2)Очистка дымовых газов. Аппараты для очистки. Принципы работы и эффективность. Роль дымовых труб.
- •Удаление золы и шлака с территории станции.
- •Билет № 22
- •Принцип работы гидростанций (гэс и гаэс). Определение электрической мощности и энергии, вырабатываемой на гидростанции. Понятия расходаЮ стока, напора. Схемы концентрации напора.
- •Деаэрация питательной воды. Типы деаэраторов. Тепловой баланс деаэратора.
- •Вопрос 2.
- •По назначению:
- •По параметрам пара:
- •2. Кпд тэц по производству электроэнергии и отпуску тепла, в том числе и через условное топливо. Полные и удельные расходы топлива на тэц по выработке электроэнергии и отпуску тепла.
- •1. Гидротехнические сооружения гэс. Плотины гэс, их назначение и классификация.
- •2.Цикл Ренкина и его изображение в p, V и t, s диаграммах. Термический кпд цикла и способы его повышения.
- •Вопрос 1. Конденсационные турбины
- •2 Вопрос. Классификация гидротрубин.
- •Газотурбинные установки (гту).
Экзаменационный билет № 3
1.Классификация гидротурбин. Основные элементы проточного тракта реактивных гидротурбин. Диапазон изменения кпд гидротурбин.
Гидравлической турбиной называется двигатель, преобразующий энергию движущейся воды в механическую энергию вращения его рабочего колеса. В практике принято гидротурбины подразделять на классы, системы, типы и серии. Существует два класса гидротурбин: активные и реактивные.
Удельная энергия:
На входе в раб.колесо На выходе из рабочего колеса
Отданная водой рабочему колесу энергия равна разности энергий в потоке до и после рабочего колеса
-
потенциальная энергия.
-
кинетическая энергия.
Если ГТ использует только кинетическую энергию то турбина является активной,
Если и кинет. и потенц. то турб. явл реактвной.
Класс реактивных турбин объединяет следующие системы: осевые – пропеллерные и поворотно - липастные, диагональные поворотно – лопастные и радиально -осевые турбины.
В класс активных турбин входят системы ковшовых, наклонно-струйных турбин и турбин, двойного действия. Последние две системы не имеют столь широкого распространения, как ковшовые. Каждая система турбин содержит несколько типов., имеющих геометрически, подобные проточные части и одинаковую быстроходность, но различающихся по размерам. Геометрически подобные турбины различных размеров образуют серию.
Кроме того, все турбины условно делятся на низко-, средне- и высоко-напорные. Низконапорными принято считать, турбины, работающие при Н<25 м, средненапорными при 25 ≤ Н ≤ 80 м и высоконапорными при Н > 80 м.
Турбины подразделяются на малые, средние и крупные.
К малым туpбинам относятся те, у которых диаметр рабочего колеса Di ≤ l,2 м при низких, напорах и Di ≤ 0,5 м при высоких, а мощность составляет не более 1000 кВт.
К средним — те турбины, у которых l,2 ≤ Di ≤ 2,5 м при низких напорах и 0,5 м ≤ Di ≤ l,6 м при высоких, а мощность 1000 кВт<N≤15000 кВт.
К крупным турбинам относятся те, которые имеют D1 и N1 больше, чем у средних. Подчеркнем, однако, условность и историчность такого деления гидротурбин.
13.Активные гидротурбины.
Н
аиболее
распространенными активными гидротурбинами
являются ковшовые. Принципиальная
схема ковшовой турбины:
Вода из верхнего бьефа подводится трубопроводом к рабочему колесу, выполненному в виде диска, закрепленного на валу турбины, и вращающемуся в воздухе. По окружности диска расположены ковшеобразные лопасти (ковши). На ковшах, происходит преобразование гидравлической энергии, заключенной в струе, в механическую. Ковши равномерно распределяются по ободу рабочего колеса и последовательно один за другим при его вращении принимают струю.
Подвод воды к рабочему колесу осуществляется посредством сопла, внутри которого расположена регулирующая игла. Сопло представляет, собой сходящийся насадок из отверстия которого при работе турбины выбрасывается струя воды. В сопле вся энергия воды, подведенная к нему по трубопроводу за вычетом потерь, обращается в кинетическую.
Игла, перемещаясь в сопле в продольном направлении, меняет его выходное сечение и тем самым диаметр выходящей струи. При изменении диаметра струи изменяется расход через сопло.
Игла в одном из крайних своих положений полностью закрывает сопло и останавливает турбину. Вода, отдав свою энергию рабочему колесу, стекает с него в отводящий канал.
Для быстрого отвода струп от рабочего колеса, необходимого для предотвращения гидравлического удара, возникающего при медленном закрытии сопла иглой, применяется отклонитель, отбрасывающий воду в сторону. Перемещение иглы и отклонителя производится одновременно.
Таким образом, в ковшовых турбинах осуществляется регулирование расхода и мощности турбины.
Конструктивные формы ковшовых турбин довольно разнообразны и могут различаться по расположению вала (вертикальные и горизонтальные), по числу сопл и рабочих колес на одном валу. Турбины используются в диапазоне напора 300—2000 м с диаметром рабочего колеса до 7,5 м. Известна турбина мощностью 200 МВт (ГЭС Мон-Се-пи, Франция).
Реактивные гидротурбины.
К реактивным гидротурбинам относятся: радиально-осевые пропеллерные, поворотно-лопастные (включая двухперовую) и диагональные. Для реактивных турбин характерны следующие основные признаки.
Рабочее колесо располагается полностью в воде, поэтому поток поды отдает энергию одновременно всем лопастям рабочего колеса.
Перед рабочим колесом только часть энергии воды находится в кинетической форме, остальная же — потенциальная энергия, соответствующая разности давлений до и после колеса.
Избыточное давление p/pg по мере протекания воды по проточному тракту рабочего колеса расходуется на увеличение относительной скорости, т. е. на создание реактивного давления потока на лопасти. Изменение направления потока за счет, кривизны лопастей приводит к возникновению активного давления потока. Таким образом, действие потока на лопасти рабочего колеса складывается из реактивного воздействия, возникающего из-за увеличения относительной скорости, и активного давления, возникающего из-за изменения направления потока
П
ропеллерные
турбины (Пр). Рабочее колесо такой турбины
располагается в камере ниже направляющего
аппарата Поэтому между направляющим
аппаратом и рабочим колесом
осуществляется нерабочий поворот
потока На лопасти рабочего колеса поток
поступает только в осевом направлении,
из-за чего такие турбины называются
осевыми.
Поворотно-лопастные турбины (ПЛ). По конструктивному выполнению поворотно-лопастные турбины (за рубежом их называют турбины Каплана) отличаются от пропеллерных только тем, что у них лопасти рабочего колеса в процессе работы могут поворачиваться вокруг своих осей, перпендикулярных оси вала
Двухперовая турбина. Увеличение числа лопастей рабочего колеса поворотно-лопастной турбины по мере повышения используемого напора приводит к возрастанию относительного диаметра втулки (dвт/D1) и последующему ухудшению энергетических качеств турбины. Для смягчения этого недостатка применяются спаренные (двухперовые) рабочие лопасти, имеющие общий фланец и общую цапфу, что позволяет повысить пропускаемый турбиной расход. Диагональные турбины (Д). Появление этих турбин обусловлено теми же причинами, что и двухперовых, т. е. стремлением обеспечить возможность работы осевых турбин двойного регулирования в области напоров, используемых радиально-осевыми турбинами.
