
- •Архитектура ом
- •НкДтаЕ еом
- •Проектування мпс
- •Комп'ютерна електроніка
- •Мережі еом
- •Структура регіональних мереж еом.
- •Структура мереж класу Campus Network.
- •Класифікація глобальних мереж еом. Структура мережі передачі даних глобальної мережі.
- •Протоколи передачі даних у глобальних мережах. Стандарти X.25 і Frame Relay.
- •Структура глобальної мережі інтернет.
- •Принцип ізоморфності та його використання для моделювання на аом.
- •Операційні блоки, що відтворюють нелінійні функції. Особливості побудови. Приклади використання.
- •Структурні аом і аом типу модель-аналог. Приклади використання обох типів аом. Достоїнства і недоліки. Джерела погрішностей.
- •Оп, що інвертують і не інвертують. Особливості. Основні характеристики.
- •Пристрої множення і ділення, їхні різновиди. Особливості побудови.
- •Інтегратори на оп. Принципи побудови і функціонування. Приклади використання.
- •Принципи побудови пристроїв, що виконують математичні операції логарифмування і потенціювання.
- •Програмування задач на аом. Мова програмування. Елементи мови, їх характеристики.
- •Вибір масштабів змінних величин при рішенні задачі на аом. Фізичний смисл масштабних коефіцієнтів.
- •Типи цап і ацп, що використовуються в аом.
- •Структури операційних автоматів із шинною організацією.
- •Конвеєрний операційний автомат.
- •Векторний операційний автомат з розрядністю даних, що змінюється, і розмірністю вектора.
- •Концепція і принципи організації розподіленої пам'яті.
- •Поняття операційного пристрою і його основні характеристики.
- •Принцип мікропрограмного керування. Концепція операційного і керуючого автоматів.
- •Функціональна і структурна сумісність мікрооперацій.
- •Синтез канонічної структури операційного автомата. Властивості канонічних структур операційних автоматів.
- •Визначення класу I – автоматів і етапи синтезу I – автоматів.
- •Визначення класу м – автоматів. Структурна організація і властивості м – автоматів. Етапи синтезу м – автоматів.
- •Структурна організація і синтез iм – автоматів з паралельною комбінаційною частиною.
- •Структурна організація і синтез iм – автоматів з послідовною комбінаційною частиною.
- •Визначення класу і структура s – автоматів. Способи підвищення швидкодії s – автоматів.
- •Принцип керування по збереженій мікропрограмі. Операційно-адресна структура мікрокоманди.
- •(С 153 по 156 - один ответ для всех)
- •Керуючий автомат із природною адресацією.
- •Функції свв. Принципи формування адрес оп при обміні між пп й оп. У чому суть переривань і припинень? Як вони реалізуються?
- •Совмещение операций обработки и ввода-вывода информации. Механизм приостановок вычислительного процесса.
- •Совмещение операций обработки и ввода-вывода информации. Система прерываний вычислительного процесса.
- •Визначення апаратного інтерфейсу. Його функції. Чим пояснюється наявність інтерфейсів різних рівнів? Малі інтерфейси.
- •Малые интерфейсы пу. Назначение и типы. Особенности реализации и основные характеристики rs-232c.
- •Малые интерфейсы пу. Особенности реализации и основные характеристики ирпр, Centronics.
- •Классификация интерфейсов по способу передачи информации. Особенности организации синхронных и асинхронных интерфейсов.
- •Принципи реалізації вводу-виводу в міни- і мікро-еом. Програмний обмін і обмін з використанням кпдп. Адресація пп в загальному адресному просторі.
- •4Пристрої введення текстової інформації. Основні параметри читаючих автоматів. Які ознаки використовуються для складання опису символів?
- •2.3 Устройство ручного ввода (клавиатура)
- •2.4 Устройства ввода с промежуточных носителей
- •2.5 Устройства автоматического ввода текстовой информации (читающие автоматы)
- •Основные способы регистрации информации для ПчУ. Особенности и принципы реализации ударного способа.
- •Основные способы регистрации информации для ПчУ. Особенности и принципы реализации струйного способа.
- •Основные способы регистрации информации для ПчУ. Особенности и принципы реализации электрофотографического способа.
- •Методи і технічні засоби вводу-виводу графічної інформації.
- •6. Устройства и системы ввода-вывода графической информации
- •6.1. Классификация и структурные схемы графических дисплеев
- •Пристрої вводу-виводу мовних повідомлень. Основні ознаки, що характеризують мову. Елементи, що утворять фонологічний алфавіт.
- •Формування мовних повідомлень за правилами і по зразках. Способи стиску інформації в пристроях вводу-виводу мовних повідомлень.
- •Принципи ієрархічної організації пам'яті еом. Роль взу в ієрархічній структурі пам'яті сучасних еом
- •Фізичні основи магнітного запису інформації. Горизонтальний і вертикальний магнітний запис.
- •Конструювання еом
- •Стадії проектування. Технічне завдання. Технічний проект.
- •Стадії проектування. Технічна пропозиція. Ескізний проект.
- •Стадії проектування. Робоча конструкторська документація.
- •Перешкоди в лініях зв'язку. Ємнісна, індуктивна перешкоди.
- •Методи боротьби з перешкодами. Рекомендації до проектування швидкодіючих еом.
- •Кондуктивний перенос. Розрахунок стандартної кондуктивной складової в стандартних тілах.
- •Конвективный перенос. Загальні положення. Вільна конвенція в необмеженому просторі.
- •Конвективный перенос. Загальні положення. Вільна конвенція в обмеженому просторі.
- •Конвективный перенос. Змушена конвекція. Поперечний рух охолодного потоку.
- •Теплове випромінювання. Розрахунок променистої складової нагрітого тіла.
- •Основи автоматизації проектування засобів от
- •Структура та компоненти систем автоматизованого проектування, їх призначення та характеристика. Типова структура сапр цп, еом.
- •Моделі цифрових систем на різних рівнях абстракції и етапах проектування. Основні свойства, методи та засоби реалізації моделей цс.
- •Методика проектування складних цифрових систем на підставі сапр. Особливості автоматизованого проектування цс на сучасній елементній базі.
- •Vhdl- мова опису та проектування цс. Основні можливості і засоби мови.
- •Засоби опису архітектури цс в мові vhdl. Синтезуєма підмножина мови vhdl.
- •Сучасні методології розробки складних інформаційних систем та їх програмного забезпечення. Case– системи, особливості організації та застосування.
Методи боротьби з перешкодами. Рекомендації до проектування швидкодіючих еом.
Перешкодостійкість лінії визначає її здатність зменшувати рівень перешкод, які створюються в зовнішньому середовищі, на внутрішніх провідниках. Перешкодостійкість лінії залежить від типу фізичного середовища, яке використовується, а також від екрануючих і придушуючиш перешкоди засобів самої лінії. Найменше перешкодостійкими є радіолінії, гарною стійкістю володіють кабельні — волоконно-оптичні, вони малочутливі до зовнішнього електромагнітного випромінювання. Звичайно для зменшення перешкод, що з'являються через зовнішні електромагнітні поля, провідники екранують і скручують.
Перехресні наведення на ближньому кінці (Near End Cross Talk — NEXT) визначають перешкодостійстійкість кабелю до внутрішніх джерел перешкод, коли електромагнітне поле сигналу, переданого виходом передавача по одній парі провідників, наводить на іншу пару провідників сигнал перешкоди. Якщо до другої пари буде підключений приймач, то він може прийняти наведену внутрішню перешкоду за корисний сигнал. Показник NEXT, виражений у децибелах, дорівнює
10 log Рвих/Рнав,
де Рвих — потужність вихідного сигналу,
Рнав — потужність наведеного сигналу.
Чим менше значення NEXT, тим краще кабель. Так, для кручений пари категорії 5 показник NEXT повинен бути менше -27дб на частоті 100Мгц.
Кондуктивний перенос. Розрахунок стандартної кондуктивной складової в стандартних тілах.
Конвективный перенос. Загальні положення. Вільна конвенція в необмеженому просторі.
Значення αK в першу чергу залежить від стану граничного шару рідини. Для тіл з одним визначальним розміром L (вертикальні плити, стінки, довгі провідники) широкого застосування набула емпірична формула:
,
деPr-
число Прантля,
,
;
Gr-
число Грасгофа,
;
Nu-
число Нуссельта,
;
c, n – емпіричні коефіцієнти;
m – індекс, який означає, що фізичні параметри рідини беруться для середньої температури
.
(1.15)
В залежності від
значення комплексного критерію
розрізняють чотири типових ситуації,
які характеризуються певним режимом
руху рідини та значеннями С і n (таблиця
1.1).
Таблиця. 1.1.
Режими руху рідини
-
№
Значення
c
n
Режим руху рідини
1
0,5
0
Плівковий
2
1,18
1/8
Перехідний до ламінарного
3
0,54
1/4
Ламінарний
4
0,135
1/3
Турбулентний
Формула (1.15) універсальна в тому розумінні, що стосується різних середовищ (повітря, водень, вуглекислий газ, мастила тощо). Нас ця формула цікавить з точки зору застосування до електронних схем, тобто коли середовищем є повітря.
Форма поверхонь тіл зводиться до трьох базових поверхонь: площина, сфера, циліндр.
Ці поверхні характеризуються одним визначальним розміром L та орієнтацією поверхні в середовищі (повітрі). Орієнтація характеризується значенням параметра N. Основні випадки орієнтації поверхні наведемо у вигляді таблиці 1.2.
Чотири характерні режими конвективної тепловіддачі пов’язують зі значенням емпіричного індексу n і називають законом ступеня n. Розглянемо кожний з чотирьох законів та дамо відповідні формули визначення конвективної тепловіддачі.
Таблиця 1.2.
Орієнтація поверхні в середовищі
№ |
Поверхня та орієнтація |
L |
N |
1 |
Горизонтальний циліндр |
d – діаметр |
1,0 |
2 |
Вертикальна пластина чи циліндр |
H – висота |
1,0 |
3 |
Горизонтальна пластина: а) нижня площина
б) верхня площина
|
Lmin - мінімальний розмір площини |
0,7
1,3 |
Закон ступеня нуль. Біля поверхні тіла утворюється майже нерухома плівка нагрітого повітря. Теплообмін відбувається практично за рахунок теплопровідності. Такий режим теплообміну має місце при незначних перепадах температур (θ=Т-ТС) для тіл з малими розмірами та плавними формами.
Закон ступеня 1/8. Такий закон має місце при відносно невеликих перепадах температур для тіл з малими розмірами та різкими формами. Наприклад, при охолодженні тонких довгих стержнів. Режим руху теплоносія - перехідний до ламінарного. Інтенсивність теплообміну незначна. Має місце формула:
,
(1.16)
де d - діаметр стержня;
.
(1.17)
Закон ступеня 1/4. При цьому законі на поверхні тіла відбувається ламінарний рух. Здійснюється значний конвективний теплообмін. Така картина спостерігається біля ребер радіаторів, на поверхні плоских та циліндричних апаратів середнього розміру. Має місце формула:
, (1.18)
де L - визначальний розмір, м;
N - параметр, що визначає орієнтацію тіла;
.
(1.19)
Закон ступеня 1/3. При цьому законі на поверхні тіла відбувається інтенсивний турбулентний рух теплоносія і відбувається інтенсивний теплообмін. Коефіцієнт конвективної тепловіддачі визначається за формулою
,
(1.20)
.
(1.21)
Для визначення коефіцієнта а3 можна скористатись спеціальною таблицею.
Найбільш часто зустрічаються саме закони ступеня 1/4 та 1/3. Тому особливого значення для плоских і циліндричних поверхонь набуває спосіб швидкого визначення ступеня n:
я
кщо
,
то n=1/4;
якщо
,
то n=1/3,
(1.22)
де визначальний розмір L береться в м.
Приклад 1.1. Корпус
електричного приладу (рис.1.7) має розмір
паралелепіпеда L1 = 0,3 м, L2 =0,4 м, Н = 0,2 м,
.
Знайти теплову потужність корпусу при
конвективній тепловіддачі.
а) б)
Рис.1.7. Корпус приладу та його теплова модель
Через грані паралелепіпеда паралельно протікають шість теплових потоків. Оскільки бокові поверхні мають однаковий визначальний розмір і розташовані вертикально, то їх можна об’єднати в одну поверхню. Теплове коло (рис.1.7 б) є паралельним з’єднанням трьох теплових опорів: Rбок, Rкр, Rдно.
Конвективна провідність системи визначається як сума трьох провідностей:
,
де
Розглянемо дно і кришку:
;
;
,
тому n=1/4.
Оскільки визначальні розміри бокових граней менші визначального розміру дна і кришки, то теплообмін по всіх гранях має ступінь n=1/4. Отже маємо такі дані для визначення коефіцієнтів конвективної тепловіддачі бокових граней, кришки та дна відповідно:
.
Згідно формули (1.18) та формули (1.19)
;
;
.
Отже:
.
Теплова потужність при конвективній тепловіддачі
.