
- •Процесори 80х86. Основні характеристики. Типи процесорів: sx, dx, dx-2. Адресний простір. Обчислення адреси.
- •Пам'ять pc. Типи пам'яті (convention, umb, hma, extended, expanded). Cmos - пам'ять, Shadow - пам'ять.
- •Диски, дисководи і контролери. Типи, коротка характеристика.
- •Ms dos. Призначення, особливості й основні компоненти.
- •Комп'ютерні віруси. Способи захисту інформації.
- •Ms dos. Пакетні командні файли. Призначення, команди. Утиліта ве.
- •Os/2. Коротка характеристика. Особливості обчислення адреси.
- •Unix: команди керування файлами і каталогами. Права доступу користувачів.
- •Windows. Коротка характеристика. Режими роботи.
- •Класифікація переривань ibm pc. Апаратні переривання. Маскирование апаратних переривань.
- •Оброблювачі переривань ibm pc. Обробка переривань з використанням мов ассемблера і с. Модифікація оброблювачів переривань.
- •Структура дискових томів у ms dos.
- •Керування дисками і каталогами в ms dos.
- •Com і exe програми. Їх особливості і правила написання.
- •Принципи організації взаємодії користувальницької програми з клавіатурою ibm pc.
- •Принципи організації виводу інформації на екран ibm pc.
- •Принципи організації виводу інформації на принтер для ibm pc.
- •Файлова система ms dos, функції з використанням fcb і дескриптора.
- •Основи створення резидентних програм для ms dos.
- •Компоновщики і завантажники. Призначення і застосування.
- •Відладчики, дизасемблери і профайлери. Призначення. Функції і можливості.
- •Утиліти. Призначення. Приклади використання.
- •Комп'ютерна електроніка
- •T, jk, d, rs - тригери. Принцип роботи. Синхронні й асинхронні тригери.
- •Двоступінчасті тригери за схемою ms. Тригери з керуванням по фронту. Принцип роботи. Область застосування.
- •Шифрувачі і дешифрувачі. Синтез комбінаційних схем (кс) на базі дешифрувачів.
- •Мультиплексори. Синтез кс на мультиплексорах.
- •Синтез операційних елементів комбінаційного типу.
- •Регістри. Загальні відомості, класифікація і принцип роботи.
- •Методика синтезу багатофункціональних регістрів.
- •Лічильники. Принцип дії, класифікація. Синтез лічильників з довільним модулем і порядком рахунку.
- •Додавачі. Основні поняття і визначення. Перенос у додавачах.
- •Програмуємі логічні матриці (плм). Синтез схем із застосуванням плм.
- •Запам'ятовуючі пристрої. Класифікація, структура, принцип дії.
- •Постійні запам'ятовуючі пристрої (пзп). Синтез схем на базі пзп.
- •Арифметико-логічні пристрої. Принцип дії, використання в обчислювальній техніці.
- •Розподільники тактів. Методи синтезу розподільників по заданих часових діаграмах.
- •Аналогові обчислювальні машини. Основні вирішальні елементи.
- •Структурні міри інформації. Статична міра інформації, поняття ентропії.
- •2. Комбинаторная мера.
- •3. Логарифмическая мера.
- •Властивості безумовної ентропії.
- •Умовна ентропія, властивості умовної ентропії.
- •Ентропія й інформація, властивості інформації.
- •Квантування інформації. Теорема Котельникова.
- •Основна теорема про кодування для каналу без шуму. Оптимальне кодування.
- •Коди Шеннона-Фано і Хаффмена.
- •Коди, що виявляють помилки і коректують коди. Код Хемминга.
- •Групові коди. Циклічні коди.
- •Семантичний розрив між архітектурою еом і мовами високого рівня.
- •Основи горизонтальної і вертикальної обробки інформації.
- •Використання матричного паралелізму в архітектурі спеціалізованих еом.
- •Використання конвеєрного паралелізму в архітектурі спеціалізованих еом.
- •Заготівля результату в архітектурі спеціалізованих еом.
- •Машини потоків даних.
- •Асоціативні системи.
- •Матричні системи.
- •Конвеєрні системи.
- •Багатопроцесорні системи.
- •Багатомашинні системи.
- •Топологічні структури обчислювальних систем. Приклади реалізацій.
- •Мережі еом
- •Алгоритмічна структура обчислювальних мереж. Призначення протоколів відповідних рівнів.
- •Стандарти комітету ieee в області локальних обчислювальних мереж. Протоколи ieee 802.3, ieee 802.4, ieee 802.5.
- •Стандарт швидкісної оптичної магістралі fddi.
- •Основні складові елементи мережної архітектури.
- •Стандарти швидкісних магістралей Fast Ethernet, Switch Ethernet, 100vg.
- •Архітектурні особливості малих локальних мереж. Структура мережі битбас.
Машини потоків даних.
Особенностью таких систем является возможность выполнения операций по мере готовности операндов. В вычислительных системах потоков данных выглядит естественным использование большого числа процессоров, что дает возможность параллельно выполнять множество готовых к выполнению операций.
Функциональная схема традиционной машины потоков данных приведена на рис. 1.
Модель потока данных отменяет главные атрибуты модели фон Неймана: счетчик команд, глобальную обновляемую память и единый тракт, соединяющий процессор с памятью, - которые сужают использование параллелизма.
ОС
Асоціативні системи.
К числу систем класса ОКМД относятся ассоциативные системы. Эти системы, как и матричные, характеризуются большим числом операционных устройств, способных одновременно, по командам одного управляющего устройства вести обработку нескольких потоков данных. Но эти системы существенно отличаются от матричных способами формирования потоков данных. В матричных системах данные поступают на обработку от общих или раздельных запоминающих устройств с адресной выработкой информации либо непосредственно от устройств – источников данных. В ассоциативных системах информация на обработку поступает от ассоциативных запоминающих устройств (АЗУ), характеризующихся тем, что информация из них выбирается не по определенному адресу, а по ее содержанию.
Принцип работы АЗУЗапоминающий массив, как и в адресных ЗУ, разделен на m-разрядные ячейки, число которых п. Практически для любого типа АЗУ характерно наличие следующих элементов: запоминающего массива; регистра ассоциативных признаков (РгАП); регистра маски (РгМ); регистра индикаторов адреса со схемами сравнения на входе. В АЗУ могут быть и другие элементы, наличие и функции которых определяются способом использования АЗУ.
Выборка информации из АЗУ происходит следующим образом. В РгАП из устройства управления передается код признака искомой информации (иногда его называют компарандом). Код может иметь произвольное число разрядов – от 1 до m. Если код признаков используется полностью, то он без изменения поступает на схему сравнения, если же необходимо использовать только часть кода, тогда ненужные разряды маскируются с помощью РгМ. Перед началом поиска информации в АЗУ все разряды регистра индикаторов адреса устанавливаются в состояние 1.После этого производится опрос первого разряда всех ячеек ЗМ и содержимое сравнивается с первым разрядом РгАП. Если содержимое первого разряда i-й ячейки не совпадает с содержимым первого разряда РгАП, то соответствующий этой ячейке разряд регистра индикаторов адреса Тiсбрасывается в состояние 0, если совпадает, – на Тiостается 1. Затем эта операция повторяется со вторым, третьим и последующими разрядами до тех пор, пока не будет произведено сравнение со всеми разрядами РгАП. После поразрядного опроса и сравнения в состоянии 1останутся те разряды регистра индикаторов адреса, которые соответствуют ячейкам, содержащим информацию, совпадающую с записанной в РгАП. Эта информация может быть считана в той последовательности, которая определяется устройством управления.
Наиболее характерным представителем группы ассоциативных вычислительных систем является система STARAN, разработанная в США. От матричных систем, описанных выше, она отличается не только наличием ассоциативной памяти, но и другими особенностями, ассоциативная память является памятью с многомерным доступом, т. е. в нее можно обратиться как поразрядно, так и пословно, операционные процессорные элементы предусмотрены для каждого слова памяти; имеется уникальная схема перестановок для перегруппировки данных в памяти.
Основным элементом системы является многомерная ассоциативная матрица – ассоциативный модуль (АМ), который представляет собой квадрат из 256 разрядов на 256 слов, т. е. содержит в общей сложности 65536 бит данных. Для обработки информации имеется 256 процессорных элементов, которые последовательно, разряд за разрядом, обрабатывают слова (рис. 2.9). Все ПЭ работают одновременно, по одной команде, выдаваемой устройством управления. Таким образом, сразу по одной команде обрабатываются все выбранные по определенным признакам из памяти слова.