
- •1.Задача о вычислении объема цилиндрического тела. Двойной интеграл.
- •2.Свойства двойного интеграла
- •3.Замена переменных в двойном интеграле.
- •4.Вычисление двойного интеграла в Декартовой системе координат.
- •5.Вычисление двойного интеграла в полярной системе координат.
- •6.Тройной интеграл.
- •7.Свойства тройного интеграла.
- •2.11. Свойства тройного интеграла
- •9.Вычисление тройного интеграла в цилиндрической системе координат.
- •10. Вычисление тройного интеграла в сферической системе координат
- •11.Скалярное поле. Поверхности и линии уровня скалярного поля.
- •12.Производная по направлению скалярного поля.
- •13.Градиент скалярного поля, его свойства
- •14.Векторное поле. Векторные линии векторного поля.
- •15.Поверхностный интеграл первого рода, его свойства.
- •16.Методы вычисления поверхностного интеграла первого рода.
- •17.Поток векторного поля, его гидродинамический смысл.
- •18.Поверхностный интеграл второго рода, его свойства.
- •19.Связь между поверхностными интегралами первого и второго родов.
- •20.Вычисление потока векторного поля через замкнутую поверхность. Теорема Остроградского-Гаусса.
- •22.Вычисление криволинейного интеграла первого рода.
- •23.Задача о работе силового поля.
- •24.Криволинейный интеграл второго рода, его свойства.
- •25.Вычисление криволинейного интеграла второго рода.
- •26. Формула Грина
- •27.Условия независимости криволинейного интеграла от пути интегрирования.
- •28.Циркуляция вектора. Теорема Стокса.
- •29. Числовой ряд. Сходимость числового ряда
- •30. Ряд геометрической прогрессии.
- •31. Гармонический числовой ряд. Обобщенный гармонический ряд.
- •32. Необходимое условие сходимости числового ряда.
- •33. Знакоположительные числовые ряды. Признаки сравнения.
- •35. Радикальный признак Коши
- •36. Интегральный признак Коши
- •37. Знакопеременные числовые ряды. Абсолютная и условная сходимость.
- •38. Достаточный признак сходимости знакочередующегося числового ряда (Теорема Лейбница)
- •39. Функциональный ряд. Область сходимости функционального ряда.
- •40. Степенной ряд. Интервал и радиус сходимости степенного ряда.
- •41. Свойства степенных рядов.
- •42. Ряды Тейлора и Маклорена. Разложение функций в ряд Тейлора.
- •43.Разложение функций в ряд по степеням X.
- •Знакочередующиеся ряды.
- •Функциональные ряды
Функциональные ряды
Ряд U1+U2+..+Un+.. называется функциональным, если его члены являются функциями от Х. Рассмотрим функциональный ряд U1(Х)+U2(Х)+..+Un(Х)+...(1) Совокупность тех значений Х, при которых функциональный ряд сходится, называют областью сходимости этого ряда.
Обозначим через Sn(Х) сумму первых n членов ряда (1). Если этот ряд сходится и сумма его равна S(x), то S(x)=Sn(x)+rn(x), где rn(x) есть сумма ряда Un+1(x)+Un+2(x) +…, т.е. rn(x)= Un+1(x)+Un+2(x) +… В этом случае величина rn(x) называется остатком ряда (1). Для всех значений Х в области сходимости ряда имеет место соотношение Limn→∞ rn(x)= Limn→∞[S(x)-Sn(x)]=0, т.е. остаток rn(x) сходящегося ряда стремится к нулю при n→∞.
Функциональный ряд U1(Х)+U2(Х)+..+Un(Х)+.. (1) называется мажорируемым в нек-й области изменения Х, если существует такой сходящийся числовой ряд а1+а2+а3+…+аn..(2) с положительными членами, что для всех значений Х из данной области выполняются соотношения │U1(x)│≤a1,…,│Un(x)│≤an ,… Иначе, ряд называется мажорируемым, если каждый его член по абсолютной величине не больше соответствующего члена нек-го сход. ряда с полож. членами.
Ряд Тейлор.
Для ф-и F(x) имеющей все производные до (n-1) порядка включительно, в окрестности точки х=а справедлива формула Тейлора: f(x)=f(a)+f(a)(x-a)+f(a)[(x-a)2/2!]+…
…+fn(a)[(x-a)n/n!]+Rn(x), (1) где остаточный член Rn(х)={[(x-a)n+1]/[(n+1)!]}f(n+1)[a+(x-a)], где 0<<1. Для того, чтобы ряд сходился к ф-и, необходимо и достаточно, чтобы при n остаток ряда стремился к 0, т.е. Rn(x)o. Переходя в формуле (1) к пределу при n, получим справа бесконечный ряд, котороый наз рядом Тейлора:
f(x)=f(a)+f(a)(x-a)+…+fn(a)[(x-a)n/n!]+…
Если в ряде Тейлора предположим а=0, то получим ряд Маклорена: f(x)=f(0)+f(0)x+f(0)[x2/2!]+…
…+fn(0)[xn/n!]+….
Разложение нек-х ф-й в ряд Маклорена:
ex=1+x+x2/2!+…+xn/n!+… (-;)
sinX=x-x3/3!+x5/5!+…+(-1)n-1[X2n-1]/(2n-1)!+… (-;)
cosX=1-x2/2!+x4/4!-…+[(-1)nX2n]/(2n)!+… (-;)
(1+x)m=1+mx+[m(m-1)x2]/2!+[m(m-1)*
*(m-2)x3]/3!+[m(m-1)(m-n+1)xn]/n!+… (-1;1)
ln(1+x)=x-x2/2+x3/3-..+[(-1)nxn+1]/(n+1)+.. (-1;1]
1/(1-x)=1+x+x2+…+xn+..
1/(1+X2)=1-x2+x4-x6+…
arctgX=x-x3/3+x5/5-x7/7+…+[(-1)n+1x2n-1]/2n-1+…