Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы на математику.docx
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
282.13 Кб
Скачать
  1. 1Ый и 2ой замечательный предел.

Первый замечательный предел

Второй замечательный предел

 или 

  1. Непрерывность функций и классификация. Теорема о непрерывн. Функции в точке. Теорема о непрерывн. Функциях в отрезках.

Непрерывная функция — функция без «скачков», то есть такая, у которой малые изменения аргумента приводят к малым изменениям значения функции.

Классификация точек разрыва:

- Устранимые точки разрыва

Если предел функции существует, но функция не определена в этой точке, либо предел не совпадает со значением функции в данной точке:

,

то точка   называется точкой устранимого разрыва функции.

- Точки разрыва первого и второго рода

Если предел функции в данной точке отсутствует (и функцию нельзя доопределить до непрерывной), то для числовых функций возникает два возможных варианта, связанных с существованием у числовых функций односторонних пределов:

  • если оба односторонних предела существуют и конечны, но хотя бы один из них отличен от значения функции в данной точке, то такую точку называют точкой разрыва первого рода;

  • если хотя бы один из односторонних пределов не существует или не является конечной величиной, то такую точку называют точкой разрыва второго рода.

Теорема 1.  Пусть функция f (x) непрерывна в точке x = a, и C является константой. Тогда функция Сf (x) также непрерывна при x = aТеорема 2.  Даны две функции f (x) и g (x), непрерывные в точке x = a. Тогда сумма этих функций f (x) + g (x) также непрерывна в точке x = aТеорема 3.  Предположим, что две функции f (x) и g (x) непрерывны в точке x = a. Тогда произведение этих функцийf (xg (x) также непрерывно в точке x = aТеорема 4.  Даны две функции f (x) и g (x), непрерывные при x = a. Тогда отношение этих функций   также непрерывно при x = a при условии, что  .  Теорема 5.  Предположим, что функция f (x) является дифференцируемой в точке x = a. Тогда функция f (x) непрерывна в этой точке (т.е. из дифференцируемости следует непрерывность функции в точке; обратное − неверно).  Теорема 6 (Теорема о предельном значении).  Если функция f (x) непрерывна на закрытом и ограниченном интервале [a, b], то она ограничена сверху и снизу на данном интервале. Другими словами, существуют числа m и M, такие, что

  1. Производная функции в точке. Дифференцируемость и непрерывность. Таблица производных. Правило дифференцирования.

Произво́дная (функции в точке) — основное понятие дифференциального исчисления, характеризующее скорость изменения функции (в данной точке). Определяется как предел отношения приращения функции к приращению ее аргумента при стремлении приращения аргумента к нулю, если такой предел существует. Функцию, имеющую конечную производную (в некоторой точке), называют дифференцируемой (в данной точке).

Процесс вычисления производной называется дифференци́рованием. Обратный процесс — нахождение первообразной — интегрирование.

Дифференци́руемая (в точке) фу́нкция — это функция, у которой существует дифференциал (в данной точке).

Непрерывность (см.18)

Основные правила дифференцирования