
- •Множества. Точка. Операции над множествами. Алгебра множеств. Множества с заданными на них операциями. Алгебраические структуры: группа, кольцо, поле. Поле комплексных чисел.
- •Матрицы. Определитель. Их свойства и вычисления.
- •Решение слау методом Крамера.
- •Миноры матрицы. Ранг матрицы. Элементарные преобразования матрицы.
- •Арифметическое пространство строк. Линейная зависимость. Свойство линейной зависимости. Теорема о базисном миноре.
- •Теорема о совместности. Произвольные слау.
- •Метод Гаусса
- •Линейные пространства. Примеры, определение. Базис линейного пространства, размерности, разложение векторов в пространстве
- •Основные понятия аналитической геометрии. Векторная алгебра. Скалярное, векторное и смешанное произведение векторов.
- •Плоскость в пространстве.
- •Прямая линия в пространстве и на плоскости.
- •Эллипс, гипербола и параболы.
- •Поверхности: цилиндры, поверхности, вращение, эллипсоид, гиперболоид, параболоид, конусы второго порядка.
- •Теоремы последовательностей.
- •Основные элементарные функции, пределы функций, теоремы о пределе.
- •1Ый и 2ой замечательный предел.
- •Непрерывность функций и классификация. Теорема о непрерывн. Функции в точке. Теорема о непрерывн. Функциях в отрезках.
- •Производная функции в точке. Дифференцируемость и непрерывность. Таблица производных. Правило дифференцирования.
- •Производная сложной функции. Таблица производных. Производная функции задана не явно. Логарифм дифференциала. Производная функции заданной параметрически.
- •Обратная функция
- •Исследование функции. Построение графиков.
- •Метод Ньютона
- •Метод Симпсона.
Исследование функции. Построение графиков.
Общая схема исследования функции и построения ее графика
Найти область определения функции. Выделить особые точки (точки разрыва).
Проверить наличие вертикальных асимптот в точках разрыва и на границах области определения.
Найти точки пересечения с осями координат
Установить, является ли функция чётной или нечётной.
Определить, является ли функция периодической или нет (только для тригонометрических функций, остальные непериодические, пункт пропускается).
Найти точки экстремума и интервалы монотонности (возрастания и убывания) функции.
Найти точки перегиба и интервалы выпуклости-вогнутости.
Найти наклонные асимптоты функции.
Построить график функции.
Метод Ньютона
Чтобы
численно решить уравнение
методом
простой итерации,
его необходимо привести к следующей
форме:
,
где
— сжимающее
отображение.
Для
наилучшей сходимости метода
в точке очередного приближения
должно
выполняться условие
.
Решение данного уравнения ищут в виде
,
тогда:
В
предположении, что точка приближения
«достаточно близка» к корню
,
и что заданная функция непрерывна
,
окончательная формула для
такова:
С
учётом этого функция
определяется
выражением:
Эта функция в окрестности корня осуществляет сжимающее отображение[1], и алгоритм нахождения численного решения уравнения сводится к итерационной процедуре вычисления:
По теореме Банаха последовательность приближений стремится к корню уравнения .
Метод Симпсона.
Суть
приёма заключается в приближении
подынтегральной функции на
отрезке
интерполяционным
многочленом второй
степени
,
то есть приближение графика функции на
отрезке параболой. Метод Симпсона
имеет порядок
погрешности 4
и алгебраический
порядок точности 3.
Формулой Симпсона называется интеграл от интерполяционного многочлена второй степени на отрезке :
где
,
и
—
значения функции в соответствующих
точках (на концах отрезка и в его
середине).