Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Elementy_lineynoy_algebry (1).docx
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
127.97 Кб
Скачать
  1. Первый замечательный предел равен

Пример 1.

  1. Второй замечательный предел

Пример 1.

  1. Непрерывность функции в точке.

Теорема. Всякая элементарная функция непрерывна в каждой точке, в которой она определена.

   Определение. Функция f(x), определенная в окрестности некоторой точки х0, называется непрерывной в точке х0, если предел функции и ее значение в этой точке равны, т.е.

 

Тот же факт можно записать иначе: 

 

            Определение. Если функция f(x) определена в некоторой окрестности точки х0, но не является непрерывной в самой точке х0, то она называется разрывной функцией, а точка х0 – точкой разрыва.

           Определение. Функция f(x) называется непрерывной в точке х0, если для любого положительного числа e>0 существует такое число D>0, что для любых х, удовлетворяющих условию

верно неравенство                                .

 

            Определение.  Функция f(x) называется непрерывной в точке х = х0, если приращение функции в точке х0 является бесконечно малой величиной.

 

f(x) = f(x0) + a(x)

где a(х) – бесконечно малая при х=х0.

 

  1. Производная функции, таблица производных

Производной функции называется предел отношения приращения функции к приращению аргумента, когда приращение аргумента стремится к нулю:

Операция нахождения производной функции называется дифференцированием. В результате выполнения этой операции мы по определенным правилам  получаем  другую функцию:

В этом равенстве   – функция, от которой мы берем производную,

 – функция, которая получается в результате этой операции.

Для того, чтобы каждый раз не искать производные элементарных функций, используя определение  производной, существует таблица производных  элементарных функций:

1. Производная константы равна нулю:

2. Производная степенной функции:

Заметим, что   может принимать любые действительные значения.

Примеры.

1. 

2. 

3. 

3. Производная показательной функции:

Пример.

Частный случай этой формулы:

4. Производная логарифма:

Частный случай этой формулы:

5. Производные тригонометрических функций:

6. Производные обратных тригонометрических функций:

  1. Геометрический смысл производной

Рассмотрим график функции y = f(x), определенной и непрерывной на (a,b). Зафиксируем произвольную точку x на (a,b), и зададим приращение D x№ 0, причем x+D x О (a,b). Пусть точки M,P - точки на графике f(x), абсциссы которых равны x, x+D x (рис.21). Координаты точек M и P имеют вид M(x,f(x)), P(x+D x,f(x+D x). Прямую, проходящую через точки M, P графика функции f(x) будем называть секущей. Обозначим угол наклона секущей MP к оси ОX через f (D x).

Определение 3. Если существует предельное положение секущей MP при стремлении точки N к точке M вдоль графика функции при D x® 0), то это предельное положение называется касательной к графику функции f(x) в данной точке M этого графика.

Из данного определения следует, что для существования касательной к графику f(x) в точке M достаточно, чтобы существовал предел limD x® 0f (D x) = f 0, который равен углу, образованному касательной с положительным направлением оси OX.

Справедливо утверждение:

Предложение 1. Если f(x) имеет в данной точке x производную, то существует касательная к графику функции f(x) в точке  M( x,f(x)) , причем угловой коэффициент этой касательной равен производной f'(x).

Из этого утверждения вытекает геометрический смысл производной: производная f'(x0) есть угловой коэффициент касательной, проведенной к кривой y = f(x) в точке x0, который в свою очередь равен tg угла наклона касательной к графику функции.

Тогда уравнение касательной к кривой f(x) в точке x0 имеет вид

y = f(x0)+f'(x0)(x-x0)

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]