Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ОТВЕТЫ ПО ЭКОНОМИКЕ.docx
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
131.67 Кб
Скачать

24. Теории игр: основные понятия и классификация

Во-первых, теория игр занимается анализом ситуаций, в которых поведение индивидов взаимообусловлено: решение каждого из них оказывает влияние на результат взаимодействия и. следовательно, на решения остальных

индивидов. Решая вопрос о своих действиях, индивид вынужден

ставить себя на место контрагентов. Во-вторых, теория игр не

требует полной рациональности индивидов, в ней используется

целый ряд моделей индивидов, от индивида как совершенного

калькулятора до индивида как робота. В-третьих, теория игр не

предполагает существования, единственности и Парето-оптимальности равновесия во взаимодействиях. Первое уточнение касается кооперативных и некооперативных игр. В кооперативных играх возможны обмен информации между участниками и формирование коалиций. В некооперативных играх,

о которых и пойдет в основном речь, исходным пунктом в анализе

является индивидуальный участник, причем обмен информации

между участниками и формирование коалиций исключены. Далее,

игра может быть представлена либо в стратегической (матричной),

либо в развернутой форме.

2 вариант ответа (на всякий случай)

Определив предмет институционализма как анализ взаимодействия

индивидов и структур, его обеспечивающих, необходимо обратиться

к вопросу о методе. Математический аппарат, традиционно

используемый экономистами (дифференциальное исчисление),

вряд ли приемлем в качестве базового метода в анализе взаимодействий.

Главным образом потому, что использование этого аппарата

обосновывается рядом утверждений из «жесткого ядра»

неоклассики, с которыми соглашаются далеко не все институцио-

налисты: полной рациональностью индивидов; существованием,

единственностью и Парето-оптимальностью равновесия; экзогенным

характером предпочтений, описываемых ординалистской

теорией предельной полезности.

Формальные модели в институциональной экономике строятся

с помощью теории игр, развитие которой берет отсчет с момента

появления книги Дж. фон Неймана и О. Морген Штерна «Теория

игр и экономическое поведение» (1944). Во-первых, теория игр

занимается анализом ситуаций, в которых поведение индивидов

взаимообусловлено: решение каждого из них оказывает влияние

на результат взаимодействия и. следовательно, на решения остальных

индивидов. Решая вопрос о своих действиях, индивид вынужден

ставить себя на место контрагентов. Во-вторых, теория игр не

требует полной рациональности индивидов, в ней используется

целый ряд моделей индивидов, от индивида как совершенного

калькулятора до индивида как робота. В-третьих, теория игр не

предполагает существования, единственности и Парето-оптималь-

ности равновесия во взаимодействиях. Эти причины и обусловливают

наш интерес к формальным моделям институтов, построенным

с помощью теории игр. Обратимся к их анализу более подробно.

Первое уточнение касается кооперативных и некооперативных

игр. В кооперативных играх возможны обмен информации между

участниками и формирование коалиций. В некооперативных играх,

о которых и пойдет в основном речь, исходным пунктом в анализе

является индивидуальный участник, причем обмен информации

между участниками и формирование коалиций исключены. Далее,

игра может быть представлена либо в стратегической (матричной),

либо в развернутой форме1. Например, вернемся к упомянутой

в предыдущих лекциях «дилемме заключенных» (рис. 5.1).

Первые цифры в описании результатов взаимодействия отражают

полезность первого участника, вторые — второго: U{ (признавать,

при условии, что второй не признает) = 3. Напомним, что

здесь речь идет о «полезности» различных сроков осуждения,

которая обратно пропорциональна их величине.

Классификация моделей

Теперь рассмотрим несколько базовых для теории игр моделей.

Эти модели отличаются количеством точек равновесия по Нэшу

и их совпадением или несовпадением с точками равновесия по

Штакельбергу и по Парето. В общем виде типология моделей для

двух участников, используемых в теории игр, будет выглядеть

следующим образом3:

St ^ ч .

=

ф

2

I. JV, = S/, = St2 =

= Р* N2

IV. JV, = St} = P} Ф

Ф (N2 = St2 = P2)

1

II. yV=5/,=

= St2= P

III. N=Stx =

= St2* P

V. N = 5/, = PxФ

* (St2 = P2)

VI. N=St{*

* (St2 = />)

0

VII. 5/, = />,*

* (St2 = P2)

VIII. St{ = РФ St2

Модель I касается выбора двумя студентами места встречи:

каждого из них при желании можно найти либо в библиотеке,

либо в буфете. Предполагается, что встреча в буфете обеспечит

обоим студентам большую полезность, они смогут сопроводить

ее чашкой кофе или кружкой пива:

2-й студент

Идти в библиотеку

Идти в буфет

Идти в буфет

0, 1

3, 3 [N^St{,St2, P] ' -<

Идти

в библиотеку

— ^ 2 , 2 [N2]\

1, 0 1

Эта игра особенно интересна в связи с тем, что с ее помощью

иллюстрируется идея «фокальной точки»4 — спонтанно выбираемого

обоими студентами места встречи: Если оба хорошо знают

друг друга, то им не составит особого труда предположить место,

где они смогут найти друг друга. По всей вероятности «фокальной

точкой» чаще всего будет буфет.

Модель II иллюстрируется ситуацией «конфликта между супругами

в жесткой форме». Супруги решают, каким образом провести

79

вечер, выбирая между двумя альтернативами — идти на концерт

или на футбольный матч. Индивидуальные предпочтения очевидны:

жена предпочитает концерт, муж — матч, и при этом супруги

достаточно низко оценивают удовольствие от совместно проведенного

вечера:

Супруга

Супруг Идти на концерт

Идти на матч х

Идти на концерт х

1, 3

2, 2 [N,St[9St2t Р]

^..

г - * -

Идти на матч

- - 0, 0

- 3, 1 ' '.

Игра интересна тем, что здесь у обоих участников есть доминирующая

стратегия (х), идти на концерт — для супруги, идти на

матч — для супруга.

Следующая модель III — уже обсуждавшаяся «дилемма заключенных

»:

2-й подозреваемый

1-Й подозреваемый Признавать вину х

Не признавать

Признавать

вину х

1, 1 [N,StuSt2]t

0, 3

, -*--

-< - •

Не

признавать

- - - 3 , 0 *

----2, 2 [Р]\

Модель IV является вариацией по поводу конфликта между

супругами, но на этот раз в мягкой форме. Единственное отличие

от конфликта в жесткой форме — супруги высоко оценивают

удовольствие от совместно проведенного вечера:

Супруга

Супруг Идти на концерт

Идти на матч

Идти на концерт

2, 3 [N2,St29 P2]<

1, 1

k -<--

Идти на матч

— 0, 0 |

— 3, 2 [W,, ЗУ,, />,]*.

«Проблема разоружения» иллюстрирует модель V. Страна А

решает вопрос, развязывать ли войну в отношении страны Б или

нет, страна же Б выбирает, вооружаться ли ей или разоружаться.

Проблема в том, что разоруженная страна Б станет легкой добычей

80

для агрессора А, а вооруженная сможет адекватно ответить на

агрессию:

Страна Б

Объявить войну

Не объявлять

Вооружаться

0, 0

2, 2 [St2% Р2] ' г

Разоружаться х

- - 3, 1 [/V, Л,, />,] ^

• - 1. з [/>,]

к

Ситуация тяжелого морального выбора, связанного с принятием

решения о просмотре эротического фильма «9 '/2 недель»,

является иллюстрацией модели VI. Первый потенциальный зритель

будет сожалеть, если ему не удастся увидеть фильм, но если

он его все же начинает смотреть, то ему становится стыдно. Для

второго зрителя, ханжи, просмотр фильма следует запретить всем,

но если уж его смотреть, то только ему одному.

2-й зритель, ханжа

Не смотреть

Смотреть

Не смотреть х

0, 3

1, 1 [/V, ЗУ,] '

-< - -

г - < - -

Смотреть

— 3, 2 [5/2, Р] J

- 2, 0

i

Модель VII может быть представлена в форме следующей игры.

Каждый игрок в начале игры имеет 2 дол.и кладет половину этой

суммы в коробку. Затем коробка передается первому игроку, который

может либо оставить ее себе, либо выбросить в колодец.

Второй участник должен предсказать поведение первого, и если

ему это удается, то он получает 1 дол. (который оставался у первого).

Если же ему не удается угадать, то он отдает первому игроку

остававшийся у него доллар. Кроме того, если коробку не бросают

в колодец, то игроки делят между собой находящуюся в ней сумму.

2-й игрок

Бросать в колодец

Не бросать

Бросит в колодец

0, 2

3, 1 [5У2, Р2] ' г

Не бросит

2, 0 j

^ I, 3 [#,,/>,!

,

Наконец, взаимоотношения государства и инвестора описываются

моделью VIII. У инвестора есть два варианта действий —

81

инвестировать в стране или не инвестировать. Государство же может

устанавливать высокое налогообложение доходов от инвестиций

или отменить налоги вообще.

Инвестор

Вводить налог

Не вводить

Не инвестировать

0, 1

1, 2 [St2]

-< -

- ...

Инвестировать

- - з , о J

-*- 2, 3 [#,, Р]

\

Выводы. Рассмотренные модели позволяют увидеть и проанализировать

проблемы, возникающие в ходе взаимодействий

индивидов5:

• Проблема координации возникает в случае существования двух

точек равновесия по Нэшу (модели I, IV). Решение проблемы

координации связано с введением дополнительных институциональных

условий, существования «фокальных точек» или соглашений.

Например, согласование супругами своих действий существенно

облегчается при наличии соглашения о приоритете интересов

супруги.

• Проблема совместимости характерна для ситуаций, когда

равновесие по Нэшу отсутствует (модели VII, VIII). Индивиды не

могут согласовать свои действия, если институты не ограничивают

и не «направляют» выбор стратегий. Например, введение во взаимоотношения

государства и инвестора фактора репутации государства

позволяет остановиться на исходе (2, 3).

• Проблема кооперации — равновесие по Нэшу существует, оно

единственно, но Парето-неоптимально (модель III — «дилемма

заключенных»). И в этой ситуации введение институционального

ограничения, нормы «не признавать вину никогда», как мы уже

видели на примере итальянской мафии, обеспечивает достижение

оптимального по Парето результата.

• Проблема справедливости становится актуальной, если единственное

равновесие по Нэшу характеризуется асимметричным,

несправедливым распределением выигрыша между участниками

взаимодействия (модели V, VI). Одним из вариантов решения проблемы

несправедливости будет переход к повторяющимся играм

и возникновение норм на основе «смешанных» стратегий, когда

в момент времени /0 индивид выбирает стратегию А, а в момент

времени (] — стратегию Б и т. д.