- •1. Этапы и основные положения конструирования
- •Этапы конструирования
- •1.2. Документы надзора и качества конструирования
- •Классификация теплообменного оборудования
- •2.1. Рекуперативные аппараты
- •Поперечные и продольные шаги труб в конвективных поверхностях нагрева
- •2.2. Регенеративные аппараты
- •Характеристика различных насадок
- •Классификация струйных аппаратов
- •3. Основные принципы конструкторских расчетов
- •3.1. Тепловые расчеты
- •Теплопроводность материалов
- •3) Число Нуссельта считается безразмерным коэффициентом теплоотдачи и определяется по формуле
- •3.2. Гидро- и аэродинамические расчеты
- •Потеря напора на ускорение
- •3.3. Коэффициенты сопротивления трения в каналах разной формы при турбулентном течении
- •В области квадратичного закона сопротивления
- •Для кольцевого зазора с эксцентриситетом
- •3.4. Коэффициенты сопротивления при поперечном обтекании трубных пучков
- •Значение коэффициента с
- •3.5. Расчет на прочность
- •3.5.6. Прибавка к толщине стенки. Суммарная прибавка к толщине элемента конструкции определяют как
- •Значения прибавки на коррозию с2
- •Значения прибавки на минусовой допуск с11 на листы
- •Значение прибавки на минусовой допуск с11 на трубы
- •Значения коэффициентов m1 m2 m3
- •3.5.8. Снижение прочности одиночным отверстием. Одиночным отверстием считается отверстие, кромка которого удалена от кромки ближайшего отверстия по срединной поверхности на расстояние более
- •3.5.9. Снижение прочности рядом отверстий. Под рядом отверстий понимают отверстия, расстояние между кромками которых не превышают значения
- •Значения коэффициентов снижения прочности сварных соединений
- •4. Компоновочные решения
- •4.1. Одно- и многокорпусное исполнение оборудования
- •4.2. Одно- и многоходовое исполнение оборудования
- •4.3. Размещение сред
- •5. Конструирование трубчатки
- •5.1. Прямые и u-образные трубки
- •5.2. Прямые и эвольвентные ширмы, в том числе п- и l- образные
- •5.3. Витые змеевики
- •5.4. Спираль Архимеда
- •5.5. Пластинчатые теплообменники
- •5.6. Обратный элемент
- •6. Интенсификация теплообмена
- •6.1. Интенсификация теплообмена при вынужденной конвекции жидкости
- •6.2. Интенсификация теплообмена при вынужденной и естественной конвекциях газов
- •Конструкции основных интенсификаторов
- •6.3. Обоснование высоты ребра интенсификатора
- •7. Проблемы конструирования трубчатки
- •7.1. Заделка трубок в коллектор
- •7.2. Компенсация температурных расширений
- •Некоторые значения температурных коэффициентов объемного и линейного расширения
- •Основные конструктивные решения по компенсации температурных расширений
- •В гибких элементах тороидального сечения напряжения определяются по формуле
- •7.3. Дистанционирование трубчатки
- •Основные способы дистанционирования
- •8. Вибрация элементов энергетического оборудования
- •8.1. Основные понятия о колебаниях
- •Постоянные Cn для однородных балок с одинаковой длиной пролетов
- •Вынуждающие вибрацию силы
- •8.3. Вибропрочность и сейсмостойкость оборудования
- •9. Проблемы загрязнения оборудования
- •Процессы и динамика загрязнения
- •Содержание взвешенных частиц, в зависимости от времени года
- •Обобщенный коэффициент проводимости определяется по формуле
- •9.2. Методы прогнозирования отложений на теплообменных поверхностях
- •9.3. Диагностика ресурсов работы теплообменного оборудования
- •9.4. Методы борьбы с отложениями в энергетическом оборудовании
- •Технические характеристики ультразвуковых установок
- •10. Моделирование теплообменного оборудования
- •10.1. Основные принципы моделирования и критерии подобия
- •10.2. Гидродинамическое подобие
- •Число Эйлера для сжимаемой жидкости
- •10.3. Тепловое подобие
- •Показатель адиабаты и число Прандтля для газов в зависимости от числа атомов в молекуле
- •Значения числа Pr для некоторых сред
- •10.4. Диффузионное подобие
- •Запишем это уравнение в безразмерном виде
- •Значения числа для некоторых сред
- •10.5. Подобие некоторых частных случаев переноса
- •10.6. Некоторые обобщения подобий
- •Физические величины, определяющие теплообмен между потоком теплоносителя и стенкой трубы
- •Сводная таблица чисел подобия
- •8. Вибрация элементов энергетического оборудования
- •8.1. Основные понятия о колебаниях
- •Вынуждающие вибрацию силы
- •8.3.Вибропрочность и сейсмостойкость оборудования.
10. Моделирование теплообменного оборудования
10.1. Основные принципы моделирования и критерии подобия
При изучении явлений, происходящих в природе, технике и обществе, наука широко пользуется методом моделирования этих явлений. Смысл моделирования заключается в том, чтобы по результатам опытов на модели судить о явлениях, происходящих в натурных условиях. При этом изучение явлений на модели можно осуществить значительно проще и полнее, чем в натуре. Однако результаты опытов на модели могут быть использованы для решения практических задач только в случае, если при проведении опытов соблюдаются определенные законы моделирования. Моделирование является весьма большой и ответственной научной задачей. Иногда исследование с помощью моделей является единственно возможным способом экспериментального изучения некоторых практически важных процессов. Так, процессы, которые длятся в течение многих лет или даже тысячелетий, нельзя исследовать в натуре, но можно в течение короткого промежутка времени (часы, дни) изучать на моделях. К таким процессам можно отнести фильтрацию нефти в земле, образование русел рек и пр. Могут быть и обратные случаи, когда быстропротекающие во времени процессы изучаются на моделях в течение более длительного времени.
Первая весьма общая формулировка законов подобия принадлежит Гельмгольцу. Нуссельт впервые применил теорию подобия к теплоотдаче, хотя ранее еще Рейнольдс осознал ее значение для описания законов гидродинамики [22,23,24].
Теория подобия основана на следующих основных идеях. Геометрически подобные фигуры, например подобные треугольники, можно, как известно, переводить одна в другую, увеличивая или уменьшая все стороны одной из этих фигур в одном и том же отношении. Развивая эту идею, и физические процессы одного рода можно называть подобными, если с помощью лишь подходящего изменения масштабов, в которых измерены рассматриваемые физические величины, их можно численно перевести одна в другую.
При этом в общем случае для неоднородных физических величин масштабы должны изменяться неодинаково. А именно, эти изменения не полностью независимы, а связаны условием подобия. Такое условие в наиболее простой форме существует уже при геометрическом подобии. В частности, геометрические фигуры тогда подобны одна другой, когда безразмерные величины, такие как отношения сторон или углы для сравниваемых случаев, имеют одинаковые значения. Соответственно подобие двух физических процессов предполагает, что определенные безразмерные величины, называемые критериями подобия, для обоих процессов равны. Их можно образовать из всех участвующих в таком процессе величин лишь с помощью умножений и деления. Несмотря на равенство критериев подобия, отдельные физические величины, входящие в них, в обоих случаях могут иметь совершенно различные значения.
С помощью упомянутого условия результаты опытов, полученные для единственного частного случая, при помощи простого пересчета можно переносить на все другие процессы, физически подобные исследованному.
Но самое общее следствие теории подобия состоит в том, что с ее помощью удается в наиболее простой и обозримой форме представить также физическую зависимость между не подобными случаями одного процесса. На этом основана важная роль, которую играет теория подобия при обработке серии опытов. В то время как результат единственного измерения охватывает лишь подобные случаи, при проведении серии опытов пытаются найти зависимость также и между не подобными друг другу случаями. При этом всегда речь идет о том, чтобы определить зависимость одной физической величины, например коэффициента теплоотдачи, от всех других, влияющих на нее величин, таких, как скорость потока, теплопроводность, диаметр трубы и т.п. Теория подобия в своей наиболее общей форме приводит к утверждению, что такую зависимость всегда можно представить в виде соотношения между критериями, существенными для рассматриваемого процесса с точки зрения подобия. Так как число критериев меньше числа исходных физических величин, зависимость между критериями определить легче, чем между исходными величинами. Однако с помощью самой теории подобия эту зависимость определить невозможно, обычно ее находят экспериментально. В математически разрешимых случаях ее можно и рассчитать.
Определение чисел подобия при моделировании изучаемых процессов требует глубокого знания механизма этих процессов и в общем случае является сложной задачей. При решении этой задачи следует все изучаемые процессы разделять на две существенно отличные группы. К первой надо отнести процессы и явления, которые можно описать уравнениями. Ко второй, представляющей наибольший интерес, относятся процессы и явления, еще не имеющие математического описания.
В случаях, когда уравнения исследуемых процессов неизвестны, единственной теорией, позволяющей найти числа подобия, является теория размерностей. При наличии дифференциальных уравнений исследуемых процессов числа подобия легко определяются как коэффициенты уравнений, представленных в безразмерном виде. Заметим, что степень сложности уравнений при этом не имеет никакого значения, так как для нахождения чисел подобия процесса, описываемого данным уравнением, его решения не требуется.
Естественно, что получение чисел подобия при наличии уравнений значительно проще, чем при отсутствии их. Поэтому теорию размерностей следует применять при получении критериев подобия лишь для процессов, не имеющих математического описания.
Числа подобия при использовании одних и тех же уравнений могут иметь совершенно различный вид. Если к этому добавить многообразие существующих процессов, то можно понять существование чрезвычайно большого количества чисел подобия.
На основе анализа уравнений процессов переноса количества движения, тепла и вещества дается систематизация основных чисел подобия процессов переноса в жидкостях и газах.
Следовательно, изучение любого процесса сводится к тому, что по заданным величинам находятся неизвестные, определяющие этот процесс, численные характеристики. Числа подобия, полученные из величин, заданных для данного процесса, обычно называют критериями подобия.
