Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ТВиМС (краткий материал).doc
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
387.58 Кб
Скачать

Определение доверительных интервалов Доверительный интервал для математического ожидания нормального распределения при известной дисперсии

Пусть количественный признак X генеральной совокупности распределен нормально, причем среднее квадратическое отклонение  этого распределения известно. Требуется оценить неизвестное математическое ожидание a по выборочному среднему . Найдем доверительные интервалы, покрывающие параметр a с надежностью .

Будем рассматривать выборочное среднее , как случайную величину (т.к. меняется от выборки к выборке), и выборочные значения , как одинаково распределенные независимые случайные величины (эти числа также меняются от выборки к выборке). Другими словами, математическое ожидание каждой из этих величин равно a и среднее квадратическое отклонение – . Так как случайная величина X распределена нормально, то и выборочное среднее также распределено нормально. Параметры распределения равны:

.

Потребуем, чтобы выполнялось соотношение , где – заданная надежность.

Используем формулу .

Заменим X на и  на и получим:

,

где .

Выразив из последнего равенства , получим:

.

Так как вероятность P задана и равна , окончательно имеем:

.

Смысл полученного соотношения – с надежностью можно утверждать, что доверительный интервал покрывает неизвестный параметр a, причем точность оценки равна .

Таким образом, задача решена. Число определяется из равенства ; по таблице функции Лапласа находят аргумент , которому соответствует значение функции Лапласа, равное .

Следует отметить два момента: 1) при возрастании объема выборки n число убывает и, следовательно, точность оценки увеличивается, 2) увеличение надежности оценки приводит к увеличению (так как функция Лапласа – возрастающая функция) и, следовательно, к возрастанию , то есть увеличение надежности оценки влечет за собой уменьшение ее точности.

Если требуется оценить математическое ожидание с наперед заданной точностью и надежностью , то минимальный объем выборки, который обеспечит эту точность, находят по формуле , следующей из равенства .

Проверка статистических гипотез

Закон распределения определяет количественные характеристики генеральной совокупности.

Если закон распределения неизвестен, но есть основания предположить, что он имеет определенный вид (например, А), то выдвигают гипотезу: генеральная совокупность распределена по закону А. В этой гипотезе речь идет о виде предполагаемого распределения.

Часто закон распределения известен, но неизвестны его параметры. Если есть основания предположить, что неизвестный параметр равен определенному значению , то выдвигается гипотеза . То есть в этой гипотезе речь идет о предполагаемой величине параметра известного распределения.

Возможны и другие гипотезы: о равенстве параметров двух или нескольких распределений, о независимости выборок и т.д.

Статистической называют гипотезу о виде неизвестного распределения или о параметрах известных распределений. Примеры статистических гипотез: генеральная совокупность распределена по закону Пуассона; дисперсии двух нормальных распределений равны между собой.

Наряду с выдвинутой гипотезой рассматривают и противоречащую ей гипотезу. Если выдвинутая гипотеза будет отвергнута, то имеет место противоречащая гипотеза.

Нулевой (основной) называют выдвинутую гипотезу .

Альтернативной (конкурирующей) называют гипотезу , которая противоречит нулевой. Например, если нулевая гипотеза состоит в предположении, что математическое ожидание нормального распределения равно 5, то альтернативная гипотеза, например, может состоять в предположении, что . Кратко это записывают так: .

Простой называют гипотезу, содержащую только одно предположение. Например, если – параметр показательного распределения, то гипотеза – простая. Сложной называют гипотезу, состоящую из конечного или бесконечного числа простых гипотез. Например, сложная гипотеза состоит из бесконечного множества простых гипотез вида , где – любое число, большее 3.

Выдвинутая гипотеза может быть правильной или неправильной, поэтому возникает необходимость ее проверки. Так как проверку производят статистическими методами, то ее называют статистической. В итоге статистической проверки гипотезы в двух случаях может быть принято неправильное решение, т.е. могут быть допущены ошибки двух родов.

Ошибка первого рода состоит в том, что будет отвергнута правильная гипотеза. Ошибка второго рода состоит в том, что будет принята неправильная гипотеза. Следует отметить, что последствия ошибок могут оказаться различными. Если отвергнуто правильное решение «продолжать строительство жилого дома», то эта ошибка первого рода повлечет материальный ущерб; если же принято неправильное решение «продолжать строительство» несмотря на опасность обвала дома, то эта ошибка второго рода может привести к многочисленным жертвам. Иногда, наоборот, ошибка первого рода влечет более тяжелые последствия.

Правильное решение может быть принято также в двух случаях, когда принимается правильная гипотеза или отвергается неверная гипотеза.

Вероятность совершить ошибку первого рода принято обозначать через ; ее называют уровнем значимости. Чаще всего, уровень значимости принимают равным 0,05 или 0,01. Если, например, принят уровень значимости 0,05, то это означает, что в пяти случаях из ста имеется риск допустить ошибку первого рода (отвергнуть правильную гипотезу).