
Собственные полупроводники
Полупроводник без примесей называют собственным полупроводником или полупроводником i-типа. Он обладает собственной электропроводностью, которая складывается из электронной и дырочной. Если к полупроводнику не приложено напряжение, то электроны и дырки проводимости совершают хаотическое движение и никакого тока, разумеется, нет. Под действием разности потенциалов в полупроводнике возникает электрическое поле, которое ускоряет электроны и дырки и сообщает им еще некоторое поступательное движение, представляющее собой ток проводимости. Движение носителей заряда под действием электрического поля иначе называется дрейфом носителей, а ток проводимости — током дрейфа iдр. Полный ток проводимости складывается из электронного и дырочного токов: iдр= inдр+ ipдр Индексы n и p соответственно обозначают электронный и дырочный вклады. Удельная проводимость зависит от концентрации носителей и от их подвижности. В полупроводниках при повышении температуры вследствие интенсивной генерации пар носителей концентрация подвижных носителей увеличивается значительно быстрее, нежели уменьшается их подвижность, поэтому с повышением температуры проводимость растет. Для изготовления полупроводников применяют в основном германий и кремний, а также некоторые соединения галлия, индия и пр.
Концентрация носителей заряда в собственных проводниках
Процесс возникновения свободных электронов и дырок, обусловленный разрывом ковалентных связей, называется тепловой генерацией носителей заряда. Его характеризуют скоростью генерации G, определяющей количество пар носителей заряда, возникающих в единицу времени в единице объема. Скорость генерации тем больше, чем выше температура и чем меньше энергия, затрачиваемая на разрыв ковалентных связей. Возникшие в результате генерации электроны и дырки, находясь в состоянии хаотического теплового движения, спустя некоторое время, среднее значение которого называется временем жизни носителей заряда, встречаются друг с другом, в результате чего происходит восстановление ковалентных связей. Этот процесс называется рекомбинацией носителей заряда и характеризуется скоростью рекомбинации R, которая определяет количество пар носителей заряда, исчезающих в единицу времени в единице объема. Произведение скорости генерации на время жизни носителей заряда определяет их концентрацию, то есть количество электронов и дырок в единице объема. При неизменной температуре генерационно- рекомбинационные процессы находятся в динамическом равновесии, то есть в единицу времени рождается и исчезает одинаковое количество носителей заряда (R=G). Это условие называется законом равновесия масс.
Состояние полупроводника, когда R=G, называется равновесным; в этом состоянии в собственном полупроводнике устанавливаются равновесные концентрации электронов и дырок, обозначаемые ni и pi . Поскольку электроны и дырки генерируются парами, то выполняется условие: ni=pi . При этом полупроводник остается электрически нейтральным, т.к. суммарный отрицательный заряд электронов компенсируется суммарным положительным зарядом дырок. Это условие называется законом нейтральности заряда. При комнатной температуре в кремнии ni=pi=1,4· 1010 см-3, а в германии ni=pi=2,5· 1013 см-3. Различие в концентрациях объясняется тем, что для разрыва ковалентных связей в кремнии требуются большие затраты энергии, чем в германии. С ростом температуры концентрации электронов и дырок возрастают по экспоненциальному закону
Примесные полупроводники
Примесный полупроводник - это полупроводник, электрофизические свойства которого определяются, в основном, примесями других химических элементов. Процесс введения примесей в полупроводник называется легированием полупроводника, а сами примеси называют легирующими. Для равномерного распределения легирующей примеси в объеме полупроводника легирование осуществляется в процессе выращивания монокристалла полупроводника из жидкой или газообразной фазы. Локальное легирование части объема полупроводника, например, приповерхностной области, производится методом диффузии при сильном нагреве полупроводника или низкотемпературными методами ионного легирования.
Роль примесей могут играть и всевозможные дефекты структуры кристаллической решетки полупроводника, такие как вакансии, междуузельные атомы, дислокации.
При малой концентрации примесей (1021...1023 м-3) примесные атомы создают дополнительные дискретные энергетические уровни в запрещенной зоне полупроводника. Такой полупроводник называется невырожденным. Повышение концентрации примесных атомов в полупроводнике до 1024...1025 м-3 сопровождается появлением в запрещенной зоне полупроводника вместо дискретных уровней зон примесных уровней. Такие полупроводники называют вырожденными.
Различают два основных вида примесей, которые используются для преднамеренного легирования полупроводников и создающих преимущественно электронный или дырочный тип проводимости. Примеси, введение которых в полупроводник создает электронный тип проводимости, называются донорными. Примесь, создающая дырочную проводимость, называется акцепторной.