Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
FOE.docx
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
235.52 Кб
Скачать
  1. Кристалли́ческая решётка — вспомогательный геометрический образ, вводимый для анализа строения кристалла. Решётка имеет сходство с канвой или сеткой, что даёт основание называть точки решётки узлами. Решёткой является совокупность точек, которые возникают из отдельной произвольно выбранной точки кристалла под действием группы трансляции. Это расположение замечательно тем, что относительно каждой точки все остальные расположены совершенно одинаково. Применение к решётке в целом любой из присущих ей трансляций приводит к её параллельному переносу и совмещению.

Для удобства анализа обычно точки решётки совмещают с центрами каких-либо атомов из числа входящих в кристалл, либо с элементами симметрии.

В зависимости от пространственной симметрии, все кристаллические решётки подразделяются на семь кристаллических систем. По форме элементарной ячейки они могут быть разбиты на шесть сингоний. Все возможные сочетания имеющихся в кристаллической решётке поворотных осей симметрии и зеркальных плоскостей симметрии приводят к делению кристаллов на 32 класса симметрии, а с учётом винтовых осей симметрии и скользящих плоскостей симметрии на 230 пространственных групп.

  1. Электрон в периодическом поле кристалла.

Валентные электроны в кристалле движутся не вполне свободно – на них действует периодическое поле решетки, что приводит к тому, что спектр возможных значении энергии валентных электронов распадается на ряд чередующихся разрешенных и запрещенных зон.

Зонная структура энергетических уровней получается непосредственно из решения уравнения Шредингера для электрона, движущегося в периодическом силовом поле, создаваемом решеткой кристалла.

Образование энергетических зон.

Рассмотрим воображаемый процесс объединения атомов в кристалл. Пусть первоначально имеется N изолированных атомов какого-либо вещества. Пока атомы изолированы друг от друга, они имеют полностью совпадающие схемы энергетических уровней. Заполнение уровней электронами осуществляется в каждом атоме независимо от заполнения аналогичных уровней в других атомах. По мере сближения атомов между ними возникает все усиливающееся взаимодействие, которое приводит к изменению положения уровней. Вместо одного одинакового для всех N атомов уровня возникают N очень близких, но не совпадающих уровней. Таким образом, каждый уровень изолированного атома расщепляется в кристалле на N густо расположенных уровней, образующих полосу или зону.

Физически происхождение зонной структуры в кристалле связано с образованием кристалла из N атомов, каждый из которых в свободном состоянии обладает дискретным электронным энергетическим спектром (см. лекцию N 9, § 2).

Мы рассмотрим образование энергетических зон на примере воображаемого процесса образования кристалла лития (щелочной металл) путем последовательного добавления атомов.

На рис. 13.1 изображены схемы энергетических уровней двух изолированных атомов .

Если атомы расположены далеко друг от друга (изолированы), то схемы их энергетических уровней будут совершенно одинаковы: два электрона с различной ориентацией спинов на уровнях 1s и по одному электрону на уровнях в 2s (рис. 13.1).

  1. Обобществление электронов в кристалле.

Для того чтобы понять особенности явлений, имеющих место в твердых телах, рассмотрим следующий идеализированный пример. Возьмем атом натрия.

Расположим N  атомов натрия на больших расстояниях друг от друга в трехмерном пространстве так, чтобы они образовали в значительно увеличенном виде кристаллическую решетку натрия. Так как расстояния между атомами  r значительно больше параметра решетки аа= 4.3Å;r>>а), то взаимодействием между атомами можно пренебречь.

На рисунке каждый атом изображен в виде потенциальной ямы, внутри которой проведены энергетические уровни 1s, 2s и 2p -  укомплектованы у натрия полностью, уровень 3s – наполовину, остальные уровни, расположенные выше уровня 3s – свободны.

Изолированные атомы отделены друг от друга потенциальными барьерами шириной r. Высота барьера для электронов, находящихся на разных уровнях различна. Она равна расстоянию от этих уровней до нулевого уровня 00. Потенциальный барьер препятствует свободному переходу электронов от одного атома к другому.

Рис. Расположение атомов натрия в линейной цепочке. d-параметр решетки.

Качественная картина распределения плотности вероятности обнаружения электронов на данном расстоянии от ядра показывает, что максимумы этих кривых примерно соответствуют положению боровских орбит  для эти электронов.

  1. В физике твёрдого тела, эффективной массой частицы называется динамическая масса, которая появляется при движении частицы в периодическом потенциале кристалла. Можно показать, что электроны и дырки в кристалле реагируют на электрическое поле так, как если бы они свободно двигались в вакууме, но с некой эффективной массой, которую обычно определяют в единицах массы покоя электрона me (9.11×10−31 кг). Она отлична от массы покоя электрона.

Эффективная масса определяется из аналогии со вторым законом Ньютона  . С помощью квантовой механики можно показать, что для электрона во внешнем электрическом поле E:

где   — ускорение,   — постоянная Планка  — волновой вектор, который определяется из импульса как   =   — закон дисперсии, который связывает энергию с волновым вектором  . В присутствии электрического поля на электрон действует сила  , где заряд обозначен q. Отсюда можно получить выражение для эффективной массы  :

Для свободной частицы закон дисперсии квадратичен, и таким образом эффективная масса является постоянной и равной массе покоя. В кристалле ситуация более сложна и закон дисперсии отличается от квадратичного. В этом случае только в экстремумах кривой закона дисперсии, там где можно аппроксимировать параболой можно использовать понятие массы.

Эффективная масса зависит от направления в кристалле и является в общем случае тензором.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]