Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ekz_voprosy_po_ekonometrike_dlya_PM3_2011-2012...doc
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
9.6 Mб
Скачать
  1. Понятие статистической процедуры оценивания параметров эконометрической модели. Линейные статистические процедуры. Требования к наилучшей статистической процедуре.

Пусть имеется выборка

значений переменных x и y модели

Данная выборка получена на этапе наблюдения и предназначена для оценивания параметров модели

В рамках данной модели величины (*) связаны следующей СЛОУ:

Она называется системой уравнений наблюдения объекта в рамках исследуемой линейной модели, или иначе – схемой Гаусса-Маркова. Вот компактная запись этой схемы .

где - вектор известных значений эндогенной переменной yt модели;

- вектор неизвестных значений случайных возмущений ut;

- матрица известных значений предопределенной переменной x исходной модели, расширенная столбцом единиц (при наличии a0);

Наконец, – вектор неизвестных коэффициентов уравнения модели.

Оценку вектора обозначим . Тот факт, что эта оценка вычисляется по выборочным данным при помощи некоторой статистической процедуры, отразим:

где f(· , ·) – символ процедуры.

Данная процедура именуется линейной относительно вектора значений эндогенной переменной yt, если: .

, где матрица коэффициентов, зависящих только от выборочных значений X предопределенной переменной хt.

Класс таких всевозможных линейных процедур оценивания по исходной выборке вектора обозначим символом F.

Наилучшая процедура f*(· , ·) из выбранного класса процедур F должна генерировать оценку , которая обладает одновременно двумя свойствами: ожидаемая оценка параметра совпадает с истинным значением

, i=0,1 (эффективности).

  1. Теорема Гаусса-Маркова: выражение вектора оценок коэффициентов и доказательство их несмещённости.

  2. Теорема Гаусса-Маркова: выражение Cov и его обоснование.

  3. Теорема Гаусса-Маркова: предпосылки и свойство наименьших квадратов

  4. Теорема Гаусса-Маркова: выражение .

  5. Взвешенный метод наименьших квадратов (ВМНК). Простейшая модель гетероскедастичности случайного остатка. Практическая реализация ВМНК.

26. Обобщённый метод наименьших квадратов (ОМНК) и доступный обобщённый метод наименьших квадратов.

27. Система нормальных уравнений и явный вид её решения при оценивании методом наименьших квадратов (МНК) линейной модели парной регрессии (на примере модели Оукена).

  1. Ковариационная матрица оценок коэффициентов линейной модели парной регрессии: явные выражения .

  2. Свойства МНК-оценок параметров линейной модели множественной регрессии (ЛММР) при нормальном векторе случайных остатков: независимость случайных векторов .

Рассмотрим с учётом схемы Гаусса-Маркова в компактной форме и случайный вектор истинной ошибки оценки : (1)

или в компактном виде

Видно, что вектор является выходом линейного преобразования вектора . Следовательно, вектор имеет нормальный закон распределения с числовыми характеристиками

.

Значит, и вектор является нормально распределённым случайным вектором с числовыми характеристиками .

Теперь рассмотрим вектор

Подставим в это выражение (1)

(2)

или в компактной записи

Согласно (2) вектор тоже является выходом линейного преобразования вектора . Следовательно, и вектор имеет нормальный закон распределения. Его числовые характеристики

Для доказательства независимости нормально распределенных случайных величин необходимо и достаточно доказать, что эти векторы некоррелированны, т.е. что их взаимная ковариационная матрица нулевая:

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]